|
@@ -0,0 +1,607 @@
|
|
|
+//------------------------------------------------------------------------------------------------------
|
|
|
+//
|
|
|
+// ARDUINO SOLAR CHARGE CONTROLLER (MPPT)
|
|
|
+//
|
|
|
+// This code is a modified version of sample code from http://www.timnolan.com/.
|
|
|
+// modified by deba168
|
|
|
+// dated 08/02/2015
|
|
|
+//Last updated on 26/03/2015
|
|
|
+//------------------------------------------------------------------------------------------------------
|
|
|
+
|
|
|
+#include "TimerOne.h" // using Timer1 library from http://www.arduino.cc/playground/Code/Timer1
|
|
|
+#include <LiquidCrystal_I2C.h> // using the LCD I2C Library from https://bitbucket.org/fmalpartida/new-liquidcrystal/downloads
|
|
|
+#include <Wire.h>
|
|
|
+#include <SoftwareSerial.h>
|
|
|
+// SDA....>A4
|
|
|
+// SCL....>A5
|
|
|
+//------------------------------------------------------------------------------------------------------
|
|
|
+// definitions
|
|
|
+
|
|
|
+#define SOL_AMPS_CHAN 1 // Defining the adc channel to read solar amps
|
|
|
+#define SOL_VOLTS_CHAN 0 // defining the adc channel to read solar volts
|
|
|
+#define BAT_VOLTS_CHAN 2 // defining the adc channel to read battery volts
|
|
|
+
|
|
|
+
|
|
|
+#define AVG_NUM 8 // number of iterations of the adc routine to average the adc readings
|
|
|
+#define SOL_AMPS_SCALE 0.02637 // the scaling value for raw adc reading to get solar amps
|
|
|
+#define SOL_VOLTS_SCALE 0.02928 // the scaling value for raw adc reading to get solar volts // (5/1024)*(R1+R2)/R2
|
|
|
+#define BAT_VOLTS_SCALE 0.02928 // the scaling value for raw adc reading to get battery volts
|
|
|
+
|
|
|
+#define PWM_PIN 9 // the output pin for the pwm (only pin 9 avaliable for timer 1 at 50kHz)
|
|
|
+#define PWM_ENABLE_PIN 8 // pin used to control shutoff function of the IR2104 MOSFET driver (hight the mosfet driver is on)
|
|
|
+#define PWM_FULL 1023 // the actual value used by the Timer1 routines for 100% pwm duty cycle
|
|
|
+#define PWM_MAX 100 // the value for pwm duty cyle 0-100%
|
|
|
+#define PWM_MIN 60 // the value for pwm duty cyle 0-100% (below this value the current running in the system is = 0)
|
|
|
+#define PWM_START 90 // the value for pwm duty cyle 0-100%
|
|
|
+#define PWM_INC 1 //the value the increment to the pwm value for the ppt algorithm
|
|
|
+
|
|
|
+#define TRUE 1
|
|
|
+#define FALSE 0
|
|
|
+#define ON TRUE
|
|
|
+#define OFF FALSE
|
|
|
+
|
|
|
+#define TURN_ON_MOSFETS digitalWrite(PWM_ENABLE_PIN, HIGH) // enable MOSFET driver
|
|
|
+#define TURN_OFF_MOSFETS digitalWrite(PWM_ENABLE_PIN, LOW) // disable MOSFET driver
|
|
|
+
|
|
|
+#define ONE_SECOND 50000 //count for number of interrupt in 1 second on interrupt period of 20us
|
|
|
+
|
|
|
+#define LOW_SOL_WATTS 5.00 //value of solar watts // this is 5.00 watts
|
|
|
+#define MIN_SOL_WATTS 1.00 //value of solar watts // this is 1.00 watts
|
|
|
+#define MIN_BAT_VOLTS 11.00 //value of battery voltage // this is 11.00 volts
|
|
|
+#define MAX_BAT_VOLTS 14.10 //value of battery voltage// this is 14.10 volts
|
|
|
+#define HIGH_BAT_VOLTS 13.00 //value of battery voltage // this is 13.00 volts
|
|
|
+#define LVD 11.5 //Low voltage disconnect setting for a 12V system
|
|
|
+#define OFF_NUM 9 // number of iterations of off charger state
|
|
|
+
|
|
|
+//------------------------------------------------------------------------------------------------------
|
|
|
+//Defining led pins for indication
|
|
|
+#define LED_RED 11
|
|
|
+#define LED_GREEN 12
|
|
|
+#define LED_YELLOW 13
|
|
|
+//-----------------------------------------------------------------------------------------------------
|
|
|
+// Defining load control pin
|
|
|
+#define LOAD_PIN 6 // pin-2 is used to control the load
|
|
|
+
|
|
|
+//-----------------------------------------------------------------------------------------------------
|
|
|
+// Defining lcd back light pin
|
|
|
+#define BACK_LIGHT_PIN 5 // pin-2 is used to control the load
|
|
|
+//------------------------------------------------------------------------------------------------------
|
|
|
+/////////////////////////////////////////BIT MAP ARRAY//////////////////////////////////////////////////
|
|
|
+//-------------------------------------------------------------------------------------------------------
|
|
|
+byte solar[8] = //icon for termometer
|
|
|
+{
|
|
|
+ 0b11111,
|
|
|
+ 0b10101,
|
|
|
+ 0b11111,
|
|
|
+ 0b10101,
|
|
|
+ 0b11111,
|
|
|
+ 0b10101,
|
|
|
+ 0b11111,
|
|
|
+ 0b00000
|
|
|
+};
|
|
|
+
|
|
|
+byte battery[8]=
|
|
|
+{
|
|
|
+ 0b01110,
|
|
|
+ 0b11011,
|
|
|
+ 0b10001,
|
|
|
+ 0b10001,
|
|
|
+ 0b11111,
|
|
|
+ 0b11111,
|
|
|
+ 0b11111,
|
|
|
+ 0b11111,
|
|
|
+};
|
|
|
+
|
|
|
+byte _PWM [8]=
|
|
|
+{
|
|
|
+ 0b11101,
|
|
|
+ 0b10101,
|
|
|
+ 0b10101,
|
|
|
+ 0b10101,
|
|
|
+ 0b10101,
|
|
|
+ 0b10101,
|
|
|
+ 0b10101,
|
|
|
+ 0b10111,
|
|
|
+};
|
|
|
+//-------------------------------------------------------------------------------------------------------
|
|
|
+
|
|
|
+// global variables
|
|
|
+
|
|
|
+int count = 0;
|
|
|
+int pwm = 0; //pwm duty cycle 0-100%
|
|
|
+float sol_amps; // solar amps
|
|
|
+float sol_volts; // solar volts
|
|
|
+float bat_volts; // battery volts
|
|
|
+float sol_watts; // solar watts
|
|
|
+float old_sol_watts = 0; // solar watts from previous time through ppt routine
|
|
|
+unsigned int seconds = 0; // seconds from timer routine
|
|
|
+unsigned int prev_seconds = 0; // seconds value from previous pass
|
|
|
+unsigned int interrupt_counter = 0; // counter for 20us interrrupt
|
|
|
+boolean led_on = TRUE;
|
|
|
+int led_counter = 0;
|
|
|
+int delta = PWM_INC; // variable used to modify pwm duty cycle for the ppt algorithm
|
|
|
+
|
|
|
+enum charger_mode {off, on, bulk, bat_float} charger_state; // enumerated variable that holds state for charger state machine
|
|
|
+// set the LCD address to 0x27 for a 20 chars 4 line display
|
|
|
+// Set the pins on the I2C chip used for LCD connections:
|
|
|
+// addr, en,rw,rs,d4,d5,d6,d7,bl,blpol
|
|
|
+LiquidCrystal_I2C lcd(0x27, 2, 1, 0, 4, 5, 6, 7, 3, POSITIVE); // Set the LCD I2C address
|
|
|
+//int back_light_Pin = 5;
|
|
|
+//int load_pin =6;
|
|
|
+int back_light_pin_State = 0;
|
|
|
+int load_status=0;
|
|
|
+// ---------------------------For ESP8266--------------------------------------------------------------
|
|
|
+///////////////////////////////////////////////////////////////////////////////////////////////////////
|
|
|
+
|
|
|
+// replace with your channel's thingspeak API key
|
|
|
+String apiKey = "DPK8RMTFY2B1XCAF";
|
|
|
+
|
|
|
+// connect 2 to TX of Serial USB
|
|
|
+// connect 3 to RX of serial USB
|
|
|
+SoftwareSerial ser(2,3); // RX, TX
|
|
|
+
|
|
|
+//------------------------------------------------------------------------------------------------------
|
|
|
+// This routine is automatically called at powerup/reset
|
|
|
+//------------------------------------------------------------------------------------------------------
|
|
|
+void setup() // run once, when the sketch starts
|
|
|
+{
|
|
|
+ pinMode(LED_RED, OUTPUT);
|
|
|
+ pinMode(LED_GREEN, OUTPUT);
|
|
|
+ pinMode(LED_YELLOW, OUTPUT);
|
|
|
+ pinMode(PWM_ENABLE_PIN, OUTPUT); // sets the digital pin as output
|
|
|
+ Timer1.initialize(20); // initialize timer1, and set a 20uS period
|
|
|
+ Timer1.pwm(PWM_PIN, 0); // setup pwm on pin 9, 0% duty cycle
|
|
|
+ TURN_OFF_MOSFETS; //turn off MOSFET driver chip
|
|
|
+ Timer1.attachInterrupt(callback); // attaches callback() as a timer overflow interrupt
|
|
|
+
|
|
|
+ Serial.begin(9600); // open the serial port
|
|
|
+ ser.begin(9600); // enable software serial
|
|
|
+ ser.println("AT+RST"); // reset ESP8266
|
|
|
+
|
|
|
+ pwm = PWM_START; //starting value for pwm
|
|
|
+ charger_state = off; // start with charger state as off
|
|
|
+ pinMode(BACK_LIGHT_PIN, INPUT);
|
|
|
+ pinMode(LOAD_PIN,OUTPUT);
|
|
|
+ digitalWrite(LOAD_PIN,LOW); // default load state is OFF
|
|
|
+ digitalWrite(BACK_LIGHT_PIN,LOW); // default LCd back light is OFF
|
|
|
+ lcd.begin(20,4); // initialize the lcd for 16 chars 2 lines, turn on backlight
|
|
|
+ lcd.noBacklight();
|
|
|
+ lcd.createChar(1,solar);
|
|
|
+ lcd.createChar(2,battery);
|
|
|
+ lcd.createChar(3,_PWM);
|
|
|
+}
|
|
|
+//------------------------------------------------------------------------------------------------------
|
|
|
+// This is interrupt service routine for Timer1 that occurs every 20uS.
|
|
|
+//
|
|
|
+//------------------------------------------------------------------------------------------------------
|
|
|
+void callback()
|
|
|
+{
|
|
|
+ if (interrupt_counter++ > ONE_SECOND) { //increment interrupt_counter until one second has passed
|
|
|
+ interrupt_counter = 0;
|
|
|
+ seconds++; //then increment seconds counter
|
|
|
+ }
|
|
|
+}
|
|
|
+//------------------------------------------------------------------------------------------------------
|
|
|
+// This routine reads and averages the analog inputs for this system, solar volts, solar amps and
|
|
|
+// battery volts.
|
|
|
+//------------------------------------------------------------------------------------------------------
|
|
|
+int read_adc(int channel){
|
|
|
+
|
|
|
+ int sum = 0;
|
|
|
+ int temp;
|
|
|
+ int i;
|
|
|
+
|
|
|
+ for (i=0; i<AVG_NUM; i++) { // loop through reading raw adc values AVG_NUM number of times
|
|
|
+ temp = analogRead(channel); // read the input pin
|
|
|
+ sum += temp; // store sum for averaging
|
|
|
+ delayMicroseconds(50); // pauses for 50 microseconds
|
|
|
+ }
|
|
|
+ return(sum / AVG_NUM); // divide sum by AVG_NUM to get average and return it
|
|
|
+}
|
|
|
+
|
|
|
+
|
|
|
+//------------------------------------------------------------------------------------------------------
|
|
|
+// This routine uses the Timer1.pwm function to set the pwm duty cycle.
|
|
|
+//------------------------------------------------------------------------------------------------------
|
|
|
+void set_pwm_duty(void) {
|
|
|
+
|
|
|
+ if (pwm > PWM_MAX) { // check limits of PWM duty cyle and set to PWM_MAX
|
|
|
+ pwm = PWM_MAX;
|
|
|
+ }
|
|
|
+ else if (pwm < PWM_MIN) { // if pwm is less than PWM_MIN then set it to PWM_MIN
|
|
|
+ pwm = PWM_MIN;
|
|
|
+ }
|
|
|
+ if (pwm < PWM_MAX) {
|
|
|
+ Timer1.pwm(PWM_PIN,(PWM_FULL * (long)pwm / 100), 20); // use Timer1 routine to set pwm duty cycle at 20uS period
|
|
|
+ //Timer1.pwm(PWM_PIN,(PWM_FULL * (long)pwm / 100));
|
|
|
+ }
|
|
|
+ else if (pwm == PWM_MAX) { // if pwm set to 100% it will be on full but we have
|
|
|
+ Timer1.pwm(PWM_PIN,(PWM_FULL - 1), 1000); // keep switching so set duty cycle at 99.9% and slow down to 1000uS period
|
|
|
+ //Timer1.pwm(PWM_PIN,(PWM_FULL - 1));
|
|
|
+ }
|
|
|
+}
|
|
|
+//------------------------------------------------------------------------------------------------------
|
|
|
+// This routine prints all the data out to the serial port.
|
|
|
+//------------------------------------------------------------------------------------------------------
|
|
|
+void print_data(void) {
|
|
|
+
|
|
|
+ Serial.print(seconds,DEC);
|
|
|
+ Serial.print(" ");
|
|
|
+
|
|
|
+ Serial.print("Charging = ");
|
|
|
+ if (charger_state == on) Serial.print("on ");
|
|
|
+ else if (charger_state == off) Serial.print("off ");
|
|
|
+ else if (charger_state == bulk) Serial.print("bulk ");
|
|
|
+ else if (charger_state == bat_float) Serial.print("float");
|
|
|
+ Serial.print(" ");
|
|
|
+
|
|
|
+ Serial.print("pwm = ");
|
|
|
+ Serial.print(pwm,DEC);
|
|
|
+ Serial.print(" ");
|
|
|
+
|
|
|
+ Serial.print("Current (panel) = ");
|
|
|
+ //print_int100_dec2(sol_amps);
|
|
|
+ Serial.print(sol_amps);
|
|
|
+ Serial.print(" ");
|
|
|
+
|
|
|
+ Serial.print("Voltage (panel) = ");
|
|
|
+ Serial.print(sol_volts);
|
|
|
+ //print_int100_dec2(sol_volts);
|
|
|
+ Serial.print(" ");
|
|
|
+
|
|
|
+ Serial.print("Power (panel) = ");
|
|
|
+ Serial.print(sol_volts);
|
|
|
+ // print_int100_dec2(sol_watts);
|
|
|
+ Serial.print(" ");
|
|
|
+
|
|
|
+ Serial.print("Battery Voltage = ");
|
|
|
+ Serial.print(bat_volts);
|
|
|
+ //print_int100_dec2(bat_volts);
|
|
|
+ Serial.print(" ");
|
|
|
+
|
|
|
+ Serial.print("\n\r");
|
|
|
+ delay(1000);
|
|
|
+}
|
|
|
+//------------------------------------------------------------------------------------------------------
|
|
|
+// This routine reads all the analog input values for the system. Then it multiplies them by the scale
|
|
|
+// factor to get actual value in volts or amps.
|
|
|
+//------------------------------------------------------------------------------------------------------
|
|
|
+void read_data(void) {
|
|
|
+
|
|
|
+ sol_amps = (read_adc(SOL_AMPS_CHAN) * SOL_AMPS_SCALE -13.51); //input of solar amps
|
|
|
+ sol_volts = read_adc(SOL_VOLTS_CHAN) * SOL_VOLTS_SCALE; //input of solar volts
|
|
|
+ bat_volts = read_adc(BAT_VOLTS_CHAN) * BAT_VOLTS_SCALE; //input of battery volts
|
|
|
+ sol_watts = sol_amps * sol_volts ; //calculations of solar watts
|
|
|
+}
|
|
|
+
|
|
|
+//------------------------------------------------------------------------------------------------------
|
|
|
+// This routine is the charger state machine. It has four states on, off, bulk and float.
|
|
|
+// It's called once each time through the main loop to see what state the charger should be in.
|
|
|
+// The battery charger can be in one of the following four states:
|
|
|
+//
|
|
|
+// On State - this is charger state for MIN_SOL_WATTS < solar watts < LOW_SOL_WATTS. In this state isthe solar
|
|
|
+// watts input is too low for the bulk charging state but not low enough to go into the off state.
|
|
|
+// In this state we just set the pwm = 99.9% to get the most of low amount of power available.
|
|
|
+
|
|
|
+// Bulk State - this is charger state for solar watts > MIN_SOL_WATTS. This is where we do the bulk of the battery
|
|
|
+// charging and where we run the Peak Power Tracking alogorithm. In this state we try and run the maximum amount
|
|
|
+// of current that the solar panels are generating into the battery.
|
|
|
+
|
|
|
+// Float State - As the battery charges it's voltage rises. When it gets to the MAX_BAT_VOLTS we are done with the
|
|
|
+// bulk battery charging and enter the battery float state. In this state we try and keep the battery voltage
|
|
|
+// at MAX_BAT_VOLTS by adjusting the pwm value. If we get to pwm = 100% it means we can't keep the battery
|
|
|
+// voltage at MAX_BAT_VOLTS which probably means the battery is being drawn down by some load so we need to back
|
|
|
+// into the bulk charging mode.
|
|
|
+
|
|
|
+// Off State - This is state that the charger enters when solar watts < MIN_SOL_WATTS. The charger goes into this
|
|
|
+// state when there is no more power being generated by the solar panels. The MOSFETs are turned
|
|
|
+// off in this state so that power from the battery doesn't leak back into the solar panel.
|
|
|
+//------------------------------------------------------------------------------------------------------
|
|
|
+void run_charger(void) {
|
|
|
+
|
|
|
+ static int off_count = OFF_NUM;
|
|
|
+
|
|
|
+ switch (charger_state) {
|
|
|
+ case on:
|
|
|
+ if (sol_watts < MIN_SOL_WATTS) { //if watts input from the solar panel is less than
|
|
|
+ charger_state = off; //the minimum solar watts then
|
|
|
+ off_count = OFF_NUM; //go to the charger off state
|
|
|
+ TURN_OFF_MOSFETS;
|
|
|
+ }
|
|
|
+ else if (bat_volts > MAX_BAT_VOLTS) { //else if the battery voltage has gotten above the float
|
|
|
+ charger_state = bat_float; //battery float voltage go to the charger battery float state
|
|
|
+ }
|
|
|
+ else if (sol_watts < LOW_SOL_WATTS) { //else if the solar input watts is less than low solar watts
|
|
|
+ pwm = PWM_MAX; //it means there is not much power being generated by the solar panel
|
|
|
+ set_pwm_duty(); //so we just set the pwm = 100% so we can get as much of this power as possible
|
|
|
+ } //and stay in the charger on state
|
|
|
+ else {
|
|
|
+ pwm = ((bat_volts * 10) / (sol_volts / 10)) + 5; //else if we are making more power than low solar watts figure out what the pwm
|
|
|
+ charger_state = bulk; //value should be and change the charger to bulk state
|
|
|
+ }
|
|
|
+ break;
|
|
|
+ case bulk:
|
|
|
+ if (sol_watts < MIN_SOL_WATTS) { //if watts input from the solar panel is less than
|
|
|
+ charger_state = off; //the minimum solar watts then it is getting dark so
|
|
|
+ off_count = OFF_NUM; //go to the charger off state
|
|
|
+ TURN_OFF_MOSFETS;
|
|
|
+ }
|
|
|
+ else if (bat_volts > MAX_BAT_VOLTS) { //else if the battery voltage has gotten above the float
|
|
|
+ charger_state = bat_float; //battery float voltage go to the charger battery float state
|
|
|
+ }
|
|
|
+ else if (sol_watts < LOW_SOL_WATTS) { //else if the solar input watts is less than low solar watts
|
|
|
+ charger_state = on; //it means there is not much power being generated by the solar panel
|
|
|
+ TURN_ON_MOSFETS; //so go to charger on state
|
|
|
+ }
|
|
|
+ else { // this is where we do the Peak Power Tracking ro Maximum Power Point algorithm
|
|
|
+ if (old_sol_watts >= sol_watts) { // if previous watts are greater change the value of
|
|
|
+ delta = -delta; // delta to make pwm increase or decrease to maximize watts
|
|
|
+ }
|
|
|
+ pwm += delta; // add delta to change PWM duty cycle for PPT algorythm (compound addition)
|
|
|
+ old_sol_watts = sol_watts; // load old_watts with current watts value for next time
|
|
|
+ set_pwm_duty(); // set pwm duty cycle to pwm value
|
|
|
+ }
|
|
|
+ break;
|
|
|
+ case bat_float:
|
|
|
+ if (sol_watts < MIN_SOL_WATTS) { //if watts input from the solar panel is less than
|
|
|
+ charger_state = off; //the minimum solar watts then it is getting dark so
|
|
|
+ off_count = OFF_NUM; //go to the charger off state
|
|
|
+ set_pwm_duty();
|
|
|
+ TURN_OFF_MOSFETS;
|
|
|
+ }
|
|
|
+ else if (bat_volts > MAX_BAT_VOLTS) { //since we're in the battery float state if the battery voltage
|
|
|
+ pwm -= 1; //is above the float voltage back off the pwm to lower it
|
|
|
+ set_pwm_duty();
|
|
|
+ }
|
|
|
+ else if (bat_volts < MAX_BAT_VOLTS) { //else if the battery voltage is less than the float voltage
|
|
|
+ pwm += 1; //increment the pwm to get it back up to the float voltage
|
|
|
+ set_pwm_duty();
|
|
|
+ if (pwm >= 100) { //if pwm gets up to 100 it means we can't keep the battery at
|
|
|
+ charger_state = bulk; //float voltage so jump to charger bulk state to charge the battery
|
|
|
+ }
|
|
|
+ }
|
|
|
+ break;
|
|
|
+ case off: //when we jump into the charger off state, off_count is set with OFF_NUM
|
|
|
+ if (off_count > 0) { //this means that we run through the off state OFF_NUM of times with out doing
|
|
|
+ off_count--; //anything, this is to allow the battery voltage to settle down to see if the
|
|
|
+ } //battery has been disconnected
|
|
|
+ else if ((bat_volts > HIGH_BAT_VOLTS) && (bat_volts < MAX_BAT_VOLTS) && (sol_volts > bat_volts)) {
|
|
|
+ charger_state = bat_float; //if battery voltage is still high and solar volts are high
|
|
|
+ set_pwm_duty(); //change charger state to battery float
|
|
|
+ TURN_ON_MOSFETS;
|
|
|
+ }
|
|
|
+ else if ((bat_volts > MIN_BAT_VOLTS) && (bat_volts < MAX_BAT_VOLTS) && (sol_volts > bat_volts)) {
|
|
|
+ pwm = PWM_START; //if battery volts aren't quite so high but we have solar volts
|
|
|
+ set_pwm_duty(); //greater than battery volts showing it is day light then
|
|
|
+ charger_state = on; //change charger state to on so we start charging
|
|
|
+ TURN_ON_MOSFETS;
|
|
|
+ } //else stay in the off state
|
|
|
+ break;
|
|
|
+ default:
|
|
|
+ TURN_OFF_MOSFETS;
|
|
|
+ break;
|
|
|
+ }
|
|
|
+}
|
|
|
+//------------------------------------------------------------------------------------------------------
|
|
|
+// Main loop.
|
|
|
+//
|
|
|
+//------------------------------------------------------------------------------------------------------
|
|
|
+void loop()
|
|
|
+{
|
|
|
+ read_data(); //read data from inputs
|
|
|
+ run_charger(); //run the charger state machine
|
|
|
+ //print_data(); //print data
|
|
|
+ load_control(); // control the connected load
|
|
|
+ led_output(); // led indication
|
|
|
+ lcd_display(); // lcd display
|
|
|
+ wifi_datalog();
|
|
|
+}
|
|
|
+
|
|
|
+//------------------------------------------------------------------------------------------------------
|
|
|
+//
|
|
|
+//This function displays the currnet state with the help ot the 3 LEDs
|
|
|
+//
|
|
|
+//------------------------------------------------------------------------------------------------------
|
|
|
+//----------------------------------------------------------------------------------------------------------------------
|
|
|
+/////////////////////////////////////////////LOAD CONTROL/////////////////////////////////////////////////////
|
|
|
+//----------------------------------------------------------------------------------------------------------------------
|
|
|
+
|
|
|
+void load_control()
|
|
|
+{
|
|
|
+ if (sol_watts < MIN_SOL_WATTS) // load will on when night
|
|
|
+{
|
|
|
+ if(bat_volts >LVD) // check if battery is healthy
|
|
|
+ {
|
|
|
+ load_status=1;
|
|
|
+ digitalWrite(LOAD_PIN, LOW); // load is ON
|
|
|
+ }
|
|
|
+ else if(bat_volts < LVD)
|
|
|
+ {
|
|
|
+ load_status=0;
|
|
|
+ digitalWrite(LOAD_PIN, HIGH); //load is OFF
|
|
|
+ }
|
|
|
+ }
|
|
|
+ else // load will off during day
|
|
|
+ {
|
|
|
+ load_status=0;
|
|
|
+ digitalWrite(LOAD_PIN, HIGH);
|
|
|
+ }
|
|
|
+}
|
|
|
+//-------------------------------------------------------------------------------------------------
|
|
|
+//---------------------------------Led Indication--------------------------------------------------
|
|
|
+//-------------------------------------------------------------------------------------------------
|
|
|
+
|
|
|
+void led_output(void)
|
|
|
+{
|
|
|
+ if(bat_volts > 14.1 )
|
|
|
+ {
|
|
|
+ leds_off_all();
|
|
|
+ digitalWrite(LED_YELLOW, HIGH);
|
|
|
+ }
|
|
|
+ else if(bat_volts > 11.9 && bat_volts < 14.1)
|
|
|
+ {
|
|
|
+ leds_off_all();
|
|
|
+ digitalWrite(LED_GREEN, HIGH);
|
|
|
+ }
|
|
|
+ else if(bat_volts < 11.8)
|
|
|
+ {
|
|
|
+ leds_off_all;
|
|
|
+ digitalWrite(LED_RED, HIGH);
|
|
|
+ }
|
|
|
+
|
|
|
+}
|
|
|
+
|
|
|
+//------------------------------------------------------------------------------------------------------
|
|
|
+//
|
|
|
+// This function is used to turn all the leds off
|
|
|
+//
|
|
|
+//------------------------------------------------------------------------------------------------------
|
|
|
+void leds_off_all(void)
|
|
|
+{
|
|
|
+ digitalWrite(LED_GREEN, LOW);
|
|
|
+ digitalWrite(LED_RED, LOW);
|
|
|
+ digitalWrite(LED_YELLOW, LOW);
|
|
|
+}
|
|
|
+//------------------------------------------------------------------------------------------------------
|
|
|
+//-------------------------- LCD DISPLAY --------------------------------------------------------------
|
|
|
+//-------------------------------------------------------------------------------------------------------
|
|
|
+void lcd_display()
|
|
|
+{
|
|
|
+ back_light_pin_State = digitalRead(BACK_LIGHT_PIN);
|
|
|
+ if (back_light_pin_State == HIGH)
|
|
|
+ {
|
|
|
+ lcd.backlight();// finish with backlight on
|
|
|
+ // Wait for 10 seconds and then turn off the display and backlight.
|
|
|
+ delay(15000);
|
|
|
+ lcd.noBacklight();
|
|
|
+ }
|
|
|
+
|
|
|
+ lcd.setCursor(0, 0);
|
|
|
+ lcd.print("SOL");
|
|
|
+ lcd.setCursor(4, 0);
|
|
|
+ lcd.write(1);
|
|
|
+ lcd.setCursor(0, 1);
|
|
|
+ lcd.print(sol_volts);
|
|
|
+ lcd.print("V");
|
|
|
+ lcd.setCursor(0, 2);
|
|
|
+ lcd.print(sol_amps);
|
|
|
+ lcd.print("A");
|
|
|
+ lcd.setCursor(0, 3);
|
|
|
+ lcd.print(sol_watts);
|
|
|
+ lcd.print("W ");
|
|
|
+ lcd.setCursor(8, 0);
|
|
|
+ lcd.print("BAT");
|
|
|
+ lcd.setCursor(12, 0);
|
|
|
+ lcd.write(2);
|
|
|
+ lcd.setCursor(8, 1);
|
|
|
+ lcd.print(bat_volts);
|
|
|
+ lcd.setCursor(8,2);
|
|
|
+
|
|
|
+ if (charger_state == on)
|
|
|
+ lcd.print("on");
|
|
|
+ else if (charger_state == off)
|
|
|
+ lcd.print("off");
|
|
|
+ else if (charger_state == bulk)
|
|
|
+ lcd.print("bulk");
|
|
|
+ else if (charger_state == bat_float)
|
|
|
+ lcd.print("float");
|
|
|
+
|
|
|
+ //-----------------------------------------------------------
|
|
|
+ //--------------------Battery State Of Charge ---------------
|
|
|
+ //-----------------------------------------------------------
|
|
|
+ lcd.setCursor(8,3);
|
|
|
+ if ( bat_volts >= 12.7)
|
|
|
+ lcd.print( "100%");
|
|
|
+ else if (bat_volts >= 12.5 && bat_volts < 12.7)
|
|
|
+ lcd.print( "90%");
|
|
|
+ else if (bat_volts >= 12.42 && bat_volts < 12.5)
|
|
|
+ lcd.print( "80%");
|
|
|
+ else if (bat_volts >= 12.32 && bat_volts < 12.42)
|
|
|
+ lcd.print( "70%");
|
|
|
+ else if (bat_volts >= 12.2 && bat_volts < 12.32)
|
|
|
+ lcd.print( "60%");
|
|
|
+ else if (bat_volts >= 12.06 && bat_volts < 12.2)
|
|
|
+ lcd.print( "50%");
|
|
|
+ else if (bat_volts >= 11.90 && bat_volts < 12.06)
|
|
|
+ lcd.print( "40%");
|
|
|
+ else if (bat_volts >= 11.75 && bat_volts < 11.90)
|
|
|
+ lcd.print( "30%");
|
|
|
+ else if (bat_volts >= 11.58 && bat_volts < 11.75)
|
|
|
+ lcd.print( "20%");
|
|
|
+ else if (bat_volts >= 11.31 && bat_volts < 11.58)
|
|
|
+ lcd.print( "10%");
|
|
|
+ else if (bat_volts < 11.3)
|
|
|
+ lcd.print( "0%");
|
|
|
+
|
|
|
+//---------------------------------------------------------------------
|
|
|
+//------------------Duty Cycle-----------------------------------------
|
|
|
+//---------------------------------------------------------------------
|
|
|
+ lcd.setCursor(15,0);
|
|
|
+ lcd.print("PWM");
|
|
|
+ lcd.setCursor(19,0);
|
|
|
+ lcd.write(3);
|
|
|
+ lcd.setCursor(15,1);
|
|
|
+ lcd.print(pwm);
|
|
|
+ lcd.print("%");
|
|
|
+ //----------------------------------------------------------------------
|
|
|
+ //------------------------Load Status-----------------------------------
|
|
|
+ //----------------------------------------------------------------------
|
|
|
+ lcd.setCursor(15,2);
|
|
|
+ lcd.print("Load");
|
|
|
+ lcd.setCursor(15,3);
|
|
|
+ if (load_status == 1)
|
|
|
+ {
|
|
|
+ lcd.print("On");
|
|
|
+ }
|
|
|
+ else
|
|
|
+ {
|
|
|
+ lcd.print("Off");
|
|
|
+ }
|
|
|
+}
|
|
|
+//-------------------------------------------------------------------------
|
|
|
+//----------------------------- ESP8266 WiFi ------------------------------
|
|
|
+//--------------------------Plot System data on thingspeak.com-------------
|
|
|
+//-------------------------------------------------------------------------
|
|
|
+void wifi_datalog()
|
|
|
+{
|
|
|
+ // convert to string
|
|
|
+ char buf[16];
|
|
|
+ String strTemp = dtostrf( sol_volts, 4, 1, buf);
|
|
|
+
|
|
|
+ Serial.println(strTemp);
|
|
|
+
|
|
|
+ // TCP connection
|
|
|
+ String cmd = "AT+CIPSTART=\"TCP\",\"";
|
|
|
+ cmd += "184.106.153.149"; // api.thingspeak.com
|
|
|
+ cmd += "\",80";
|
|
|
+ ser.println(cmd);
|
|
|
+
|
|
|
+ if(ser.find("Error")){
|
|
|
+ Serial.println("AT+CIPSTART error");
|
|
|
+ return;
|
|
|
+ }
|
|
|
+
|
|
|
+ // prepare GET string
|
|
|
+ String getStr = "GET /update?api_key=";
|
|
|
+ getStr += apiKey;
|
|
|
+ getStr +="&field1=";
|
|
|
+ getStr += String(strTemp);
|
|
|
+ getStr += "\r\n\r\n";
|
|
|
+
|
|
|
+ // send data length
|
|
|
+ cmd = "AT+CIPSEND=";
|
|
|
+ cmd += String(getStr.length());
|
|
|
+ ser.println(cmd);
|
|
|
+
|
|
|
+ if(ser.find(">")){
|
|
|
+ ser.print(getStr);
|
|
|
+ }
|
|
|
+ else{
|
|
|
+ ser.println("AT+CIPCLOSE");
|
|
|
+ // alert user
|
|
|
+ Serial.println("AT+CIPCLOSE");
|
|
|
+ }
|
|
|
+
|
|
|
+ // thingspeak needs 15 sec delay between updates
|
|
|
+ delay(16000);
|
|
|
+}
|