MPPT_Code.ino 24 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545
  1. //------------------------------------------------------------------------------------------------------
  2. //
  3. // ARDUINO SOLAR CHARGE CONTROLLER (MPPT)
  4. //
  5. // This code is a modified version of sample code from http://www.timnolan.com/.
  6. // modified by deba168
  7. // dated 08/02/2015
  8. // Last updated on 26/03/2015
  9. //------------------------------------------------------------------------------------------------------
  10. #include "TimerOne.h" // using Timer1 library from http://www.arduino.cc/playground/Code/Timer1
  11. #include <LiquidCrystal_I2C.h> // using the LCD I2C Library from https://bitbucket.org/fmalpartida/new-liquidcrystal/downloads
  12. #include <Wire.h>
  13. // SDA....>A4
  14. // SCL....>A5
  15. //------------------------------------------------------------------------------------------------------
  16. // definitions
  17. #define SOL_AMPS_CHAN 1 // Defining the adc channel to read solar amps
  18. #define SOL_VOLTS_CHAN 0 // defining the adc channel to read solar volts
  19. #define BAT_VOLTS_CHAN 2 // defining the adc channel to read battery volts
  20. #define AVG_NUM 8 // number of iterations of the adc routine to average the adc readings
  21. #define SOL_AMPS_SCALE 0.02637 // the scaling value for raw adc reading to get solar amps // 5/(1024*0.185)
  22. #define SOL_VOLTS_SCALE 0.02928 // the scaling value for raw adc reading to get solar volts // (5/1024)*(R1+R2)/R2
  23. #define BAT_VOLTS_SCALE 0.02928 // the scaling value for raw adc reading to get battery volts
  24. #define PWM_PIN 9 // the output pin for the pwm (only pin 9 avaliable for timer 1 at 50kHz)
  25. #define PWM_ENABLE_PIN 8 // pin used to control shutoff function of the IR2104 MOSFET driver (hight the mosfet driver is on)
  26. #define PWM_FULL 1023 // the actual value used by the Timer1 routines for 100% pwm duty cycle
  27. #define PWM_MAX 100 // the value for pwm duty cyle 0-100%
  28. #define PWM_MIN 60 // the value for pwm duty cyle 0-100% (below this value the current running in the system is = 0)
  29. #define PWM_START 90 // the value for pwm duty cyle 0-100%
  30. #define PWM_INC 1 //the value the increment to the pwm value for the ppt algorithm
  31. #define TRUE 1
  32. #define FALSE 0
  33. #define ON TRUE
  34. #define OFF FALSE
  35. #define TURN_ON_MOSFETS digitalWrite(PWM_ENABLE_PIN, HIGH) // enable MOSFET driver
  36. #define TURN_OFF_MOSFETS digitalWrite(PWM_ENABLE_PIN, LOW) // disable MOSFET driver
  37. #define ONE_SECOND 50000 //count for number of interrupt in 1 second on interrupt period of 20us
  38. #define LOW_SOL_WATTS 5.00 //value of solar watts // this is 5.00 watts
  39. #define MIN_SOL_WATTS 1.00 //value of solar watts // this is 1.00 watts
  40. #define MIN_BAT_VOLTS 11.00 //value of battery voltage // this is 11.00 volts
  41. #define MAX_BAT_VOLTS 14.10 //value of battery voltage// this is 14.10 volts
  42. #define HIGH_BAT_VOLTS 13.00 //value of battery voltage // this is 13.00 volts
  43. #define LVD 11.5 //Low voltage disconnect setting for a 12V system
  44. #define OFF_NUM 9 // number of iterations of off charger state
  45. //------------------------------------------------------------------------------------------------------
  46. //Defining led pins for indication
  47. #define LED_RED 11
  48. #define LED_GREEN 12
  49. #define LED_YELLOW 13
  50. //-----------------------------------------------------------------------------------------------------
  51. // Defining load control pin
  52. #define LOAD_PIN 6 // pin-2 is used to control the load
  53. //-----------------------------------------------------------------------------------------------------
  54. // Defining lcd back light pin
  55. #define BACK_LIGHT_PIN 5 // pin-2 is used to control the load
  56. //------------------------------------------------------------------------------------------------------
  57. /////////////////////////////////////////BIT MAP ARRAY//////////////////////////////////////////////////
  58. //-------------------------------------------------------------------------------------------------------
  59. byte solar[8] = //icon for termometer
  60. {
  61. 0b11111,
  62. 0b10101,
  63. 0b11111,
  64. 0b10101,
  65. 0b11111,
  66. 0b10101,
  67. 0b11111,
  68. 0b00000
  69. };
  70. byte battery[8]=
  71. {
  72. 0b01110,
  73. 0b11011,
  74. 0b10001,
  75. 0b10001,
  76. 0b11111,
  77. 0b11111,
  78. 0b11111,
  79. 0b11111,
  80. };
  81. byte _PWM [8]=
  82. {
  83. 0b11101,
  84. 0b10101,
  85. 0b10101,
  86. 0b10101,
  87. 0b10101,
  88. 0b10101,
  89. 0b10101,
  90. 0b10111,
  91. };
  92. //-------------------------------------------------------------------------------------------------------
  93. // global variables
  94. int count = 0;
  95. int pwm = 0; //pwm duty cycle 0-100%
  96. float sol_amps; // solar amps
  97. float sol_volts; // solar volts
  98. float bat_volts; // battery volts
  99. float sol_watts; // solar watts
  100. float old_sol_watts = 0; // solar watts from previous time through ppt routine
  101. unsigned int seconds = 0; // seconds from timer routine
  102. unsigned int prev_seconds = 0; // seconds value from previous pass
  103. unsigned int interrupt_counter = 0; // counter for 20us interrrupt
  104. boolean led_on = TRUE;
  105. int led_counter = 0;
  106. int delta = PWM_INC; // variable used to modify pwm duty cycle for the ppt algorithm
  107. enum charger_mode {off, on, bulk, bat_float} charger_state; // enumerated variable that holds state for charger state machine
  108. // set the LCD address to 0x27 for a 20 chars 4 line display
  109. // Set the pins on the I2C chip used for LCD connections:
  110. // addr, en,rw,rs,d4,d5,d6,d7,bl,blpol
  111. LiquidCrystal_I2C lcd(0x27, 2, 1, 0, 4, 5, 6, 7, 3, POSITIVE); // Set the LCD I2C address
  112. //int back_light_Pin = 5;
  113. //int load_pin =6;
  114. int back_light_pin_State = 0;
  115. int load_status=0;
  116. //------------------------------------------------------------------------------------------------------
  117. // This routine is automatically called at powerup/reset
  118. //------------------------------------------------------------------------------------------------------
  119. void setup() // run once, when the sketch starts
  120. {
  121. pinMode(LED_RED, OUTPUT);
  122. pinMode(LED_GREEN, OUTPUT);
  123. pinMode(LED_YELLOW, OUTPUT);
  124. pinMode(PWM_ENABLE_PIN, OUTPUT); // sets the digital pin as output
  125. Timer1.initialize(20); // initialize timer1, and set a 20uS period
  126. Timer1.pwm(PWM_PIN, 0); // setup pwm on pin 9, 0% duty cycle
  127. TURN_OFF_MOSFETS; //turn off MOSFET driver chip
  128. Timer1.attachInterrupt(callback); // attaches callback() as a timer overflow interrupt
  129. Serial.begin(9600); // open the serial port at 38400 bps:
  130. pwm = PWM_START; //starting value for pwm
  131. charger_state = off; // start with charger state as off
  132. pinMode(BACK_LIGHT_PIN, INPUT);
  133. pinMode(LOAD_PIN,OUTPUT);
  134. digitalWrite(LOAD_PIN,LOW); // default load state is OFF
  135. digitalWrite(BACK_LIGHT_PIN,LOW); // default LCd back light is OFF
  136. lcd.begin(20,4); // initialize the lcd for 16 chars 2 lines, turn on backlight
  137. lcd.noBacklight();
  138. lcd.createChar(1,solar);
  139. lcd.createChar(2,battery);
  140. lcd.createChar(3,_PWM);
  141. }
  142. //------------------------------------------------------------------------------------------------------
  143. // This is interrupt service routine for Timer1 that occurs every 20uS.
  144. //
  145. //------------------------------------------------------------------------------------------------------
  146. void callback()
  147. {
  148. if (interrupt_counter++ > ONE_SECOND) { //increment interrupt_counter until one second has passed
  149. interrupt_counter = 0;
  150. seconds++; //then increment seconds counter
  151. }
  152. }
  153. //------------------------------------------------------------------------------------------------------
  154. // This routine reads and averages the analog inputs for this system, solar volts, solar amps and
  155. // battery volts.
  156. //------------------------------------------------------------------------------------------------------
  157. int read_adc(int channel){
  158. int sum = 0;
  159. int temp;
  160. int i;
  161. for (i=0; i<AVG_NUM; i++) { // loop through reading raw adc values AVG_NUM number of times
  162. temp = analogRead(channel); // read the input pin
  163. sum += temp; // store sum for averaging
  164. delayMicroseconds(50); // pauses for 50 microseconds
  165. }
  166. return(sum / AVG_NUM); // divide sum by AVG_NUM to get average and return it
  167. }
  168. //------------------------------------------------------------------------------------------------------
  169. // This routine uses the Timer1.pwm function to set the pwm duty cycle.
  170. //------------------------------------------------------------------------------------------------------
  171. void set_pwm_duty(void) {
  172. if (pwm > PWM_MAX) { // check limits of PWM duty cyle and set to PWM_MAX
  173. pwm = PWM_MAX;
  174. }
  175. else if (pwm < PWM_MIN) { // if pwm is less than PWM_MIN then set it to PWM_MIN
  176. pwm = PWM_MIN;
  177. }
  178. if (pwm < PWM_MAX) {
  179. Timer1.pwm(PWM_PIN,(PWM_FULL * (long)pwm / 100), 20); // use Timer1 routine to set pwm duty cycle at 20uS period
  180. //Timer1.pwm(PWM_PIN,(PWM_FULL * (long)pwm / 100));
  181. }
  182. else if (pwm == PWM_MAX) { // if pwm set to 100% it will be on full but we have
  183. Timer1.pwm(PWM_PIN,(PWM_FULL - 1), 1000); // keep switching so set duty cycle at 99.9% and slow down to 1000uS period
  184. //Timer1.pwm(PWM_PIN,(PWM_FULL - 1));
  185. }
  186. }
  187. //------------------------------------------------------------------------------------------------------
  188. // This routine prints all the data out to the serial port.
  189. //------------------------------------------------------------------------------------------------------
  190. void print_data(void) {
  191. Serial.print(seconds,DEC);
  192. Serial.print(" ");
  193. Serial.print("Charging = ");
  194. if (charger_state == on) Serial.print("on ");
  195. else if (charger_state == off) Serial.print("off ");
  196. else if (charger_state == bulk) Serial.print("bulk ");
  197. else if (charger_state == bat_float) Serial.print("float");
  198. Serial.print(" ");
  199. Serial.print("pwm = ");
  200. Serial.print(pwm,DEC);
  201. Serial.print(" ");
  202. Serial.print("Current (panel) = ");
  203. //print_int100_dec2(sol_amps);
  204. Serial.print(sol_amps);
  205. Serial.print(" ");
  206. Serial.print("Voltage (panel) = ");
  207. Serial.print(sol_volts);
  208. //print_int100_dec2(sol_volts);
  209. Serial.print(" ");
  210. Serial.print("Power (panel) = ");
  211. Serial.print(sol_volts);
  212. // print_int100_dec2(sol_watts);
  213. Serial.print(" ");
  214. Serial.print("Battery Voltage = ");
  215. Serial.print(bat_volts);
  216. //print_int100_dec2(bat_volts);
  217. Serial.print(" ");
  218. Serial.print("\n\r");
  219. delay(1000);
  220. }
  221. //------------------------------------------------------------------------------------------------------
  222. // This routine reads all the analog input values for the system. Then it multiplies them by the scale
  223. // factor to get actual value in volts or amps.
  224. //------------------------------------------------------------------------------------------------------
  225. void read_data(void) {
  226. sol_amps = (read_adc(SOL_AMPS_CHAN) * SOL_AMPS_SCALE -13.51); //input of solar amps
  227. sol_volts = read_adc(SOL_VOLTS_CHAN) * SOL_VOLTS_SCALE; //input of solar volts
  228. bat_volts = read_adc(BAT_VOLTS_CHAN) * BAT_VOLTS_SCALE; //input of battery volts
  229. sol_watts = sol_amps * sol_volts ; //calculations of solar watts
  230. }
  231. //------------------------------------------------------------------------------------------------------
  232. // This routine is the charger state machine. It has four states on, off, bulk and float.
  233. // It's called once each time through the main loop to see what state the charger should be in.
  234. // The battery charger can be in one of the following four states:
  235. //
  236. // On State - this is charger state for MIN_SOL_WATTS < solar watts < LOW_SOL_WATTS. In this state isthe solar
  237. // watts input is too low for the bulk charging state but not low enough to go into the off state.
  238. // In this state we just set the pwm = 99.9% to get the most of low amount of power available.
  239. // Bulk State - this is charger state for solar watts > MIN_SOL_WATTS. This is where we do the bulk of the battery
  240. // charging and where we run the Peak Power Tracking alogorithm. In this state we try and run the maximum amount
  241. // of current that the solar panels are generating into the battery.
  242. // Float State - As the battery charges it's voltage rises. When it gets to the MAX_BAT_VOLTS we are done with the
  243. // bulk battery charging and enter the battery float state. In this state we try and keep the battery voltage
  244. // at MAX_BAT_VOLTS by adjusting the pwm value. If we get to pwm = 100% it means we can't keep the battery
  245. // voltage at MAX_BAT_VOLTS which probably means the battery is being drawn down by some load so we need to back
  246. // into the bulk charging mode.
  247. // Off State - This is state that the charger enters when solar watts < MIN_SOL_WATTS. The charger goes into this
  248. // state when there is no more power being generated by the solar panels. The MOSFETs are turned
  249. // off in this state so that power from the battery doesn't leak back into the solar panel.
  250. //------------------------------------------------------------------------------------------------------
  251. void run_charger(void) {
  252. static int off_count = OFF_NUM;
  253. switch (charger_state) {
  254. case on:
  255. if (sol_watts < MIN_SOL_WATTS) { //if watts input from the solar panel is less than
  256. charger_state = off; //the minimum solar watts then
  257. off_count = OFF_NUM; //go to the charger off state
  258. TURN_OFF_MOSFETS;
  259. }
  260. else if (bat_volts > MAX_BAT_VOLTS) { //else if the battery voltage has gotten above the float
  261. charger_state = bat_float; //battery float voltage go to the charger battery float state
  262. }
  263. else if (sol_watts < LOW_SOL_WATTS) { //else if the solar input watts is less than low solar watts
  264. pwm = PWM_MAX; //it means there is not much power being generated by the solar panel
  265. set_pwm_duty(); //so we just set the pwm = 100% so we can get as much of this power as possible
  266. } //and stay in the charger on state
  267. else {
  268. pwm = ((bat_volts * 10) / (sol_volts / 10)) + 5; //else if we are making more power than low solar watts figure out what the pwm
  269. charger_state = bulk; //value should be and change the charger to bulk state
  270. }
  271. break;
  272. case bulk:
  273. if (sol_watts < MIN_SOL_WATTS) { //if watts input from the solar panel is less than
  274. charger_state = off; //the minimum solar watts then it is getting dark so
  275. off_count = OFF_NUM; //go to the charger off state
  276. TURN_OFF_MOSFETS;
  277. }
  278. else if (bat_volts > MAX_BAT_VOLTS) { //else if the battery voltage has gotten above the float
  279. charger_state = bat_float; //battery float voltage go to the charger battery float state
  280. }
  281. else if (sol_watts < LOW_SOL_WATTS) { //else if the solar input watts is less than low solar watts
  282. charger_state = on; //it means there is not much power being generated by the solar panel
  283. TURN_ON_MOSFETS; //so go to charger on state
  284. }
  285. else { // this is where we do the Peak Power Tracking ro Maximum Power Point algorithm
  286. if (old_sol_watts >= sol_watts) { // if previous watts are greater change the value of
  287. delta = -delta; // delta to make pwm increase or decrease to maximize watts
  288. }
  289. pwm += delta; // add delta to change PWM duty cycle for PPT algorythm (compound addition)
  290. old_sol_watts = sol_watts; // load old_watts with current watts value for next time
  291. set_pwm_duty(); // set pwm duty cycle to pwm value
  292. }
  293. break;
  294. case bat_float:
  295. if (sol_watts < MIN_SOL_WATTS) { //if watts input from the solar panel is less than
  296. charger_state = off; //the minimum solar watts then it is getting dark so
  297. off_count = OFF_NUM; //go to the charger off state
  298. set_pwm_duty();
  299. TURN_OFF_MOSFETS;
  300. }
  301. else if (bat_volts > MAX_BAT_VOLTS) { //since we're in the battery float state if the battery voltage
  302. pwm -= 1; //is above the float voltage back off the pwm to lower it
  303. set_pwm_duty();
  304. }
  305. else if (bat_volts < MAX_BAT_VOLTS) { //else if the battery voltage is less than the float voltage
  306. pwm += 1; //increment the pwm to get it back up to the float voltage
  307. set_pwm_duty();
  308. if (pwm >= 100) { //if pwm gets up to 100 it means we can't keep the battery at
  309. charger_state = bulk; //float voltage so jump to charger bulk state to charge the battery
  310. }
  311. }
  312. break;
  313. case off: //when we jump into the charger off state, off_count is set with OFF_NUM
  314. if (off_count > 0) { //this means that we run through the off state OFF_NUM of times with out doing
  315. off_count--; //anything, this is to allow the battery voltage to settle down to see if the
  316. } //battery has been disconnected
  317. else if ((bat_volts > HIGH_BAT_VOLTS) && (bat_volts < MAX_BAT_VOLTS) && (sol_volts > bat_volts)) {
  318. charger_state = bat_float; //if battery voltage is still high and solar volts are high
  319. set_pwm_duty(); //change charger state to battery float
  320. TURN_ON_MOSFETS;
  321. }
  322. else if ((bat_volts > MIN_BAT_VOLTS) && (bat_volts < MAX_BAT_VOLTS) && (sol_volts > bat_volts)) {
  323. pwm = PWM_START; //if battery volts aren't quite so high but we have solar volts
  324. set_pwm_duty(); //greater than battery volts showing it is day light then
  325. charger_state = on; //change charger state to on so we start charging
  326. TURN_ON_MOSFETS;
  327. } //else stay in the off state
  328. break;
  329. default:
  330. TURN_OFF_MOSFETS;
  331. break;
  332. }
  333. }
  334. //------------------------------------------------------------------------------------------------------
  335. // Main loop.
  336. //
  337. //------------------------------------------------------------------------------------------------------
  338. void loop()
  339. {
  340. read_data(); //read data from inputs
  341. run_charger(); //run the charger state machine
  342. print_data(); //print data
  343. load_control(); // control the connected load
  344. led_output(); // led indication
  345. lcd_display(); // lcd display
  346. }
  347. //------------------------------------------------------------------------------------------------------
  348. //
  349. //This function displays the currnet state with the help ot the 3 LEDs
  350. //
  351. //------------------------------------------------------------------------------------------------------
  352. //----------------------------------------------------------------------------------------------------------------------
  353. /////////////////////////////////////////////LOAD CONTROL/////////////////////////////////////////////////////
  354. //----------------------------------------------------------------------------------------------------------------------
  355. void load_control()
  356. {
  357. if (sol_watts < MIN_SOL_WATTS) // load will on when night
  358. {
  359. if(bat_volts >LVD) // check if battery is healthy
  360. {
  361. load_status=1;
  362. digitalWrite(LOAD_PIN, LOW); // load is ON
  363. }
  364. else if(bat_volts < LVD)
  365. {
  366. load_status=0;
  367. digitalWrite(LOAD_PIN, HIGH); //load is OFF
  368. }
  369. }
  370. else // load will off during day
  371. {
  372. load_status=0;
  373. digitalWrite(LOAD_PIN, HIGH);
  374. }
  375. }
  376. //-------------------------------------------------------------------------------------------------
  377. //---------------------------------Led Indication--------------------------------------------------
  378. //-------------------------------------------------------------------------------------------------
  379. void led_output(void)
  380. {
  381. if(bat_volts > 14.1 )
  382. {
  383. leds_off_all();
  384. digitalWrite(LED_YELLOW, HIGH);
  385. }
  386. else if(bat_volts > 11.9 && bat_volts < 14.1)
  387. {
  388. leds_off_all();
  389. digitalWrite(LED_GREEN, HIGH);
  390. }
  391. else if(bat_volts < 11.8)
  392. {
  393. leds_off_all;
  394. digitalWrite(LED_RED, HIGH);
  395. }
  396. }
  397. //------------------------------------------------------------------------------------------------------
  398. //
  399. // This function is used to turn all the leds off
  400. //
  401. //------------------------------------------------------------------------------------------------------
  402. void leds_off_all(void)
  403. {
  404. digitalWrite(LED_GREEN, LOW);
  405. digitalWrite(LED_RED, LOW);
  406. digitalWrite(LED_YELLOW, LOW);
  407. }
  408. //------------------------------------------------------------------------------------------------------
  409. //-------------------------- LCD DISPLAY --------------------------------------------------------------
  410. //-------------------------------------------------------------------------------------------------------
  411. void lcd_display()
  412. {
  413. back_light_pin_State = digitalRead(BACK_LIGHT_PIN);
  414. if (back_light_pin_State == HIGH)
  415. {
  416. lcd.backlight();// finish with backlight on
  417. // Wait for 10 seconds and then turn off the display and backlight.
  418. delay(15000);
  419. lcd.noBacklight();
  420. }
  421. lcd.setCursor(0, 0);
  422. lcd.print("SOL");
  423. lcd.setCursor(4, 0);
  424. lcd.write(1);
  425. lcd.setCursor(0, 1);
  426. lcd.print(sol_volts);
  427. lcd.print("V");
  428. lcd.setCursor(0, 2);
  429. lcd.print(sol_amps);
  430. lcd.print("A");
  431. lcd.setCursor(0, 3);
  432. lcd.print(sol_watts);
  433. lcd.print("W ");
  434. lcd.setCursor(8, 0);
  435. lcd.print("BAT");
  436. lcd.setCursor(12, 0);
  437. lcd.write(2);
  438. lcd.setCursor(8, 1);
  439. lcd.print(bat_volts);
  440. lcd.setCursor(8,2);
  441. if (charger_state == on)
  442. lcd.print("on");
  443. else if (charger_state == off)
  444. lcd.print("off");
  445. else if (charger_state == bulk)
  446. lcd.print("bulk");
  447. else if (charger_state == bat_float)
  448. lcd.print("float");
  449. //-----------------------------------------------------------
  450. //--------------------Battery State Of Charge ---------------
  451. //-----------------------------------------------------------
  452. lcd.setCursor(8,3);
  453. if ( bat_volts >= 12.7)
  454. lcd.print( "100%");
  455. else if (bat_volts >= 12.5 && bat_volts < 12.7)
  456. lcd.print( "90%");
  457. else if (bat_volts >= 12.42 && bat_volts < 12.5)
  458. lcd.print( "80%");
  459. else if (bat_volts >= 12.32 && bat_volts < 12.42)
  460. lcd.print( "70%");
  461. else if (bat_volts >= 12.2 && bat_volts < 12.32)
  462. lcd.print( "60%");
  463. else if (bat_volts >= 12.06 && bat_volts < 12.2)
  464. lcd.print( "50%");
  465. else if (bat_volts >= 11.90 && bat_volts < 12.06)
  466. lcd.print( "40%");
  467. else if (bat_volts >= 11.75 && bat_volts < 11.90)
  468. lcd.print( "30%");
  469. else if (bat_volts >= 11.58 && bat_volts < 11.75)
  470. lcd.print( "20%");
  471. else if (bat_volts >= 11.31 && bat_volts < 11.58)
  472. lcd.print( "10%");
  473. else if (bat_volts < 11.3)
  474. lcd.print( "0%");
  475. //---------------------------------------------------------------------
  476. //------------------Duty Cycle-----------------------------------------
  477. //---------------------------------------------------------------------
  478. lcd.setCursor(15,0);
  479. lcd.print("PWM");
  480. lcd.setCursor(19,0);
  481. lcd.write(3);
  482. lcd.setCursor(15,1);
  483. lcd.print(pwm);
  484. lcd.print("%");
  485. //----------------------------------------------------------------------
  486. //------------------------Load Status-----------------------------------
  487. //----------------------------------------------------------------------
  488. lcd.setCursor(15,2);
  489. lcd.print("Load");
  490. lcd.setCursor(15,3);
  491. if (load_status == 1)
  492. {
  493. lcd.print("On");
  494. }
  495. else
  496. {
  497. lcd.print("Off");
  498. }
  499. }