123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545 |
- //------------------------------------------------------------------------------------------------------
- //
- // ARDUINO SOLAR CHARGE CONTROLLER (MPPT)
- //
- // This code is a modified version of sample code from http://www.timnolan.com/.
- // modified by deba168
- // dated 08/02/2015
- // Last updated on 26/03/2015
- //------------------------------------------------------------------------------------------------------
- #include "TimerOne.h" // using Timer1 library from http://www.arduino.cc/playground/Code/Timer1
- #include <LiquidCrystal_I2C.h> // using the LCD I2C Library from https://bitbucket.org/fmalpartida/new-liquidcrystal/downloads
- #include <Wire.h>
- // SDA....>A4
- // SCL....>A5
- //------------------------------------------------------------------------------------------------------
- // definitions
- #define SOL_AMPS_CHAN 1 // Defining the adc channel to read solar amps
- #define SOL_VOLTS_CHAN 0 // defining the adc channel to read solar volts
- #define BAT_VOLTS_CHAN 2 // defining the adc channel to read battery volts
- #define AVG_NUM 8 // number of iterations of the adc routine to average the adc readings
- #define SOL_AMPS_SCALE 0.02637 // the scaling value for raw adc reading to get solar amps // 5/(1024*0.185)
- #define SOL_VOLTS_SCALE 0.02928 // the scaling value for raw adc reading to get solar volts // (5/1024)*(R1+R2)/R2
- #define BAT_VOLTS_SCALE 0.02928 // the scaling value for raw adc reading to get battery volts
- #define PWM_PIN 9 // the output pin for the pwm (only pin 9 avaliable for timer 1 at 50kHz)
- #define PWM_ENABLE_PIN 8 // pin used to control shutoff function of the IR2104 MOSFET driver (hight the mosfet driver is on)
- #define PWM_FULL 1023 // the actual value used by the Timer1 routines for 100% pwm duty cycle
- #define PWM_MAX 100 // the value for pwm duty cyle 0-100%
- #define PWM_MIN 60 // the value for pwm duty cyle 0-100% (below this value the current running in the system is = 0)
- #define PWM_START 90 // the value for pwm duty cyle 0-100%
- #define PWM_INC 1 //the value the increment to the pwm value for the ppt algorithm
- #define TRUE 1
- #define FALSE 0
- #define ON TRUE
- #define OFF FALSE
- #define TURN_ON_MOSFETS digitalWrite(PWM_ENABLE_PIN, HIGH) // enable MOSFET driver
- #define TURN_OFF_MOSFETS digitalWrite(PWM_ENABLE_PIN, LOW) // disable MOSFET driver
- #define ONE_SECOND 50000 //count for number of interrupt in 1 second on interrupt period of 20us
- #define LOW_SOL_WATTS 5.00 //value of solar watts // this is 5.00 watts
- #define MIN_SOL_WATTS 1.00 //value of solar watts // this is 1.00 watts
- #define MIN_BAT_VOLTS 11.00 //value of battery voltage // this is 11.00 volts
- #define MAX_BAT_VOLTS 14.10 //value of battery voltage// this is 14.10 volts
- #define HIGH_BAT_VOLTS 13.00 //value of battery voltage // this is 13.00 volts
- #define LVD 11.5 //Low voltage disconnect setting for a 12V system
- #define OFF_NUM 9 // number of iterations of off charger state
-
- //------------------------------------------------------------------------------------------------------
- //Defining led pins for indication
- #define LED_RED 11
- #define LED_GREEN 12
- #define LED_YELLOW 13
- //-----------------------------------------------------------------------------------------------------
- // Defining load control pin
- #define LOAD_PIN 6 // pin-2 is used to control the load
-
- //-----------------------------------------------------------------------------------------------------
- // Defining lcd back light pin
- #define BACK_LIGHT_PIN 5 // pin-2 is used to control the load
- //------------------------------------------------------------------------------------------------------
- /////////////////////////////////////////BIT MAP ARRAY//////////////////////////////////////////////////
- //-------------------------------------------------------------------------------------------------------
- byte solar[8] = //icon for termometer
- {
- 0b11111,
- 0b10101,
- 0b11111,
- 0b10101,
- 0b11111,
- 0b10101,
- 0b11111,
- 0b00000
- };
- byte battery[8]=
- {
- 0b01110,
- 0b11011,
- 0b10001,
- 0b10001,
- 0b11111,
- 0b11111,
- 0b11111,
- 0b11111,
- };
- byte _PWM [8]=
- {
- 0b11101,
- 0b10101,
- 0b10101,
- 0b10101,
- 0b10101,
- 0b10101,
- 0b10101,
- 0b10111,
- };
- //-------------------------------------------------------------------------------------------------------
- // global variables
- int count = 0;
- int pwm = 0; //pwm duty cycle 0-100%
- float sol_amps; // solar amps
- float sol_volts; // solar volts
- float bat_volts; // battery volts
- float sol_watts; // solar watts
- float old_sol_watts = 0; // solar watts from previous time through ppt routine
- unsigned int seconds = 0; // seconds from timer routine
- unsigned int prev_seconds = 0; // seconds value from previous pass
- unsigned int interrupt_counter = 0; // counter for 20us interrrupt
- boolean led_on = TRUE;
- int led_counter = 0;
- int delta = PWM_INC; // variable used to modify pwm duty cycle for the ppt algorithm
-
- enum charger_mode {off, on, bulk, bat_float} charger_state; // enumerated variable that holds state for charger state machine
- // set the LCD address to 0x27 for a 20 chars 4 line display
- // Set the pins on the I2C chip used for LCD connections:
- // addr, en,rw,rs,d4,d5,d6,d7,bl,blpol
- LiquidCrystal_I2C lcd(0x27, 2, 1, 0, 4, 5, 6, 7, 3, POSITIVE); // Set the LCD I2C address
- //int back_light_Pin = 5;
- //int load_pin =6;
- int back_light_pin_State = 0;
- int load_status=0;
- //------------------------------------------------------------------------------------------------------
- // This routine is automatically called at powerup/reset
- //------------------------------------------------------------------------------------------------------
- void setup() // run once, when the sketch starts
- {
- pinMode(LED_RED, OUTPUT);
- pinMode(LED_GREEN, OUTPUT);
- pinMode(LED_YELLOW, OUTPUT);
- pinMode(PWM_ENABLE_PIN, OUTPUT); // sets the digital pin as output
- Timer1.initialize(20); // initialize timer1, and set a 20uS period
- Timer1.pwm(PWM_PIN, 0); // setup pwm on pin 9, 0% duty cycle
- TURN_OFF_MOSFETS; //turn off MOSFET driver chip
- Timer1.attachInterrupt(callback); // attaches callback() as a timer overflow interrupt
- Serial.begin(9600); // open the serial port at 38400 bps:
- pwm = PWM_START; //starting value for pwm
- charger_state = off; // start with charger state as off
- pinMode(BACK_LIGHT_PIN, INPUT);
- pinMode(LOAD_PIN,OUTPUT);
- digitalWrite(LOAD_PIN,LOW); // default load state is OFF
- digitalWrite(BACK_LIGHT_PIN,LOW); // default LCd back light is OFF
- lcd.begin(20,4); // initialize the lcd for 16 chars 2 lines, turn on backlight
- lcd.noBacklight();
- lcd.createChar(1,solar);
- lcd.createChar(2,battery);
- lcd.createChar(3,_PWM);
- }
- //------------------------------------------------------------------------------------------------------
- // This is interrupt service routine for Timer1 that occurs every 20uS.
- //
- //------------------------------------------------------------------------------------------------------
- void callback()
- {
- if (interrupt_counter++ > ONE_SECOND) { //increment interrupt_counter until one second has passed
- interrupt_counter = 0;
- seconds++; //then increment seconds counter
- }
- }
- //------------------------------------------------------------------------------------------------------
- // This routine reads and averages the analog inputs for this system, solar volts, solar amps and
- // battery volts.
- //------------------------------------------------------------------------------------------------------
- int read_adc(int channel){
-
- int sum = 0;
- int temp;
- int i;
-
- for (i=0; i<AVG_NUM; i++) { // loop through reading raw adc values AVG_NUM number of times
- temp = analogRead(channel); // read the input pin
- sum += temp; // store sum for averaging
- delayMicroseconds(50); // pauses for 50 microseconds
- }
- return(sum / AVG_NUM); // divide sum by AVG_NUM to get average and return it
- }
- //------------------------------------------------------------------------------------------------------
- // This routine uses the Timer1.pwm function to set the pwm duty cycle.
- //------------------------------------------------------------------------------------------------------
- void set_pwm_duty(void) {
- if (pwm > PWM_MAX) { // check limits of PWM duty cyle and set to PWM_MAX
- pwm = PWM_MAX;
- }
- else if (pwm < PWM_MIN) { // if pwm is less than PWM_MIN then set it to PWM_MIN
- pwm = PWM_MIN;
- }
- if (pwm < PWM_MAX) {
- Timer1.pwm(PWM_PIN,(PWM_FULL * (long)pwm / 100), 20); // use Timer1 routine to set pwm duty cycle at 20uS period
- //Timer1.pwm(PWM_PIN,(PWM_FULL * (long)pwm / 100));
- }
- else if (pwm == PWM_MAX) { // if pwm set to 100% it will be on full but we have
- Timer1.pwm(PWM_PIN,(PWM_FULL - 1), 1000); // keep switching so set duty cycle at 99.9% and slow down to 1000uS period
- //Timer1.pwm(PWM_PIN,(PWM_FULL - 1));
- }
- }
- //------------------------------------------------------------------------------------------------------
- // This routine prints all the data out to the serial port.
- //------------------------------------------------------------------------------------------------------
- void print_data(void) {
-
- Serial.print(seconds,DEC);
- Serial.print(" ");
- Serial.print("Charging = ");
- if (charger_state == on) Serial.print("on ");
- else if (charger_state == off) Serial.print("off ");
- else if (charger_state == bulk) Serial.print("bulk ");
- else if (charger_state == bat_float) Serial.print("float");
- Serial.print(" ");
- Serial.print("pwm = ");
- Serial.print(pwm,DEC);
- Serial.print(" ");
- Serial.print("Current (panel) = ");
- //print_int100_dec2(sol_amps);
- Serial.print(sol_amps);
- Serial.print(" ");
- Serial.print("Voltage (panel) = ");
- Serial.print(sol_volts);
- //print_int100_dec2(sol_volts);
- Serial.print(" ");
- Serial.print("Power (panel) = ");
- Serial.print(sol_volts);
- // print_int100_dec2(sol_watts);
- Serial.print(" ");
- Serial.print("Battery Voltage = ");
- Serial.print(bat_volts);
- //print_int100_dec2(bat_volts);
- Serial.print(" ");
- Serial.print("\n\r");
- delay(1000);
- }
- //------------------------------------------------------------------------------------------------------
- // This routine reads all the analog input values for the system. Then it multiplies them by the scale
- // factor to get actual value in volts or amps.
- //------------------------------------------------------------------------------------------------------
- void read_data(void) {
-
- sol_amps = (read_adc(SOL_AMPS_CHAN) * SOL_AMPS_SCALE -13.51); //input of solar amps
- sol_volts = read_adc(SOL_VOLTS_CHAN) * SOL_VOLTS_SCALE; //input of solar volts
- bat_volts = read_adc(BAT_VOLTS_CHAN) * BAT_VOLTS_SCALE; //input of battery volts
- sol_watts = sol_amps * sol_volts ; //calculations of solar watts
- }
- //------------------------------------------------------------------------------------------------------
- // This routine is the charger state machine. It has four states on, off, bulk and float.
- // It's called once each time through the main loop to see what state the charger should be in.
- // The battery charger can be in one of the following four states:
- //
- // On State - this is charger state for MIN_SOL_WATTS < solar watts < LOW_SOL_WATTS. In this state isthe solar
- // watts input is too low for the bulk charging state but not low enough to go into the off state.
- // In this state we just set the pwm = 99.9% to get the most of low amount of power available.
- // Bulk State - this is charger state for solar watts > MIN_SOL_WATTS. This is where we do the bulk of the battery
- // charging and where we run the Peak Power Tracking alogorithm. In this state we try and run the maximum amount
- // of current that the solar panels are generating into the battery.
- // Float State - As the battery charges it's voltage rises. When it gets to the MAX_BAT_VOLTS we are done with the
- // bulk battery charging and enter the battery float state. In this state we try and keep the battery voltage
- // at MAX_BAT_VOLTS by adjusting the pwm value. If we get to pwm = 100% it means we can't keep the battery
- // voltage at MAX_BAT_VOLTS which probably means the battery is being drawn down by some load so we need to back
- // into the bulk charging mode.
- // Off State - This is state that the charger enters when solar watts < MIN_SOL_WATTS. The charger goes into this
- // state when there is no more power being generated by the solar panels. The MOSFETs are turned
- // off in this state so that power from the battery doesn't leak back into the solar panel.
- //------------------------------------------------------------------------------------------------------
- void run_charger(void) {
-
- static int off_count = OFF_NUM;
- switch (charger_state) {
- case on:
- if (sol_watts < MIN_SOL_WATTS) { //if watts input from the solar panel is less than
- charger_state = off; //the minimum solar watts then
- off_count = OFF_NUM; //go to the charger off state
- TURN_OFF_MOSFETS;
- }
- else if (bat_volts > MAX_BAT_VOLTS) { //else if the battery voltage has gotten above the float
- charger_state = bat_float; //battery float voltage go to the charger battery float state
- }
- else if (sol_watts < LOW_SOL_WATTS) { //else if the solar input watts is less than low solar watts
- pwm = PWM_MAX; //it means there is not much power being generated by the solar panel
- set_pwm_duty(); //so we just set the pwm = 100% so we can get as much of this power as possible
- } //and stay in the charger on state
- else {
- pwm = ((bat_volts * 10) / (sol_volts / 10)) + 5; //else if we are making more power than low solar watts figure out what the pwm
- charger_state = bulk; //value should be and change the charger to bulk state
- }
- break;
- case bulk:
- if (sol_watts < MIN_SOL_WATTS) { //if watts input from the solar panel is less than
- charger_state = off; //the minimum solar watts then it is getting dark so
- off_count = OFF_NUM; //go to the charger off state
- TURN_OFF_MOSFETS;
- }
- else if (bat_volts > MAX_BAT_VOLTS) { //else if the battery voltage has gotten above the float
- charger_state = bat_float; //battery float voltage go to the charger battery float state
- }
- else if (sol_watts < LOW_SOL_WATTS) { //else if the solar input watts is less than low solar watts
- charger_state = on; //it means there is not much power being generated by the solar panel
- TURN_ON_MOSFETS; //so go to charger on state
- }
- else { // this is where we do the Peak Power Tracking ro Maximum Power Point algorithm
- if (old_sol_watts >= sol_watts) { // if previous watts are greater change the value of
- delta = -delta; // delta to make pwm increase or decrease to maximize watts
- }
- pwm += delta; // add delta to change PWM duty cycle for PPT algorythm (compound addition)
- old_sol_watts = sol_watts; // load old_watts with current watts value for next time
- set_pwm_duty(); // set pwm duty cycle to pwm value
- }
- break;
- case bat_float:
- if (sol_watts < MIN_SOL_WATTS) { //if watts input from the solar panel is less than
- charger_state = off; //the minimum solar watts then it is getting dark so
- off_count = OFF_NUM; //go to the charger off state
- set_pwm_duty();
- TURN_OFF_MOSFETS;
- }
- else if (bat_volts > MAX_BAT_VOLTS) { //since we're in the battery float state if the battery voltage
- pwm -= 1; //is above the float voltage back off the pwm to lower it
- set_pwm_duty();
- }
- else if (bat_volts < MAX_BAT_VOLTS) { //else if the battery voltage is less than the float voltage
- pwm += 1; //increment the pwm to get it back up to the float voltage
- set_pwm_duty();
- if (pwm >= 100) { //if pwm gets up to 100 it means we can't keep the battery at
- charger_state = bulk; //float voltage so jump to charger bulk state to charge the battery
- }
- }
- break;
- case off: //when we jump into the charger off state, off_count is set with OFF_NUM
- if (off_count > 0) { //this means that we run through the off state OFF_NUM of times with out doing
- off_count--; //anything, this is to allow the battery voltage to settle down to see if the
- } //battery has been disconnected
- else if ((bat_volts > HIGH_BAT_VOLTS) && (bat_volts < MAX_BAT_VOLTS) && (sol_volts > bat_volts)) {
- charger_state = bat_float; //if battery voltage is still high and solar volts are high
- set_pwm_duty(); //change charger state to battery float
- TURN_ON_MOSFETS;
- }
- else if ((bat_volts > MIN_BAT_VOLTS) && (bat_volts < MAX_BAT_VOLTS) && (sol_volts > bat_volts)) {
- pwm = PWM_START; //if battery volts aren't quite so high but we have solar volts
- set_pwm_duty(); //greater than battery volts showing it is day light then
- charger_state = on; //change charger state to on so we start charging
- TURN_ON_MOSFETS;
- } //else stay in the off state
- break;
- default:
- TURN_OFF_MOSFETS;
- break;
- }
- }
- //------------------------------------------------------------------------------------------------------
- // Main loop.
- //
- //------------------------------------------------------------------------------------------------------
- void loop()
- {
- read_data(); //read data from inputs
- run_charger(); //run the charger state machine
- print_data(); //print data
- load_control(); // control the connected load
- led_output(); // led indication
- lcd_display(); // lcd display
-
- }
- //------------------------------------------------------------------------------------------------------
- //
- //This function displays the currnet state with the help ot the 3 LEDs
- //
- //------------------------------------------------------------------------------------------------------
- //----------------------------------------------------------------------------------------------------------------------
- /////////////////////////////////////////////LOAD CONTROL/////////////////////////////////////////////////////
- //----------------------------------------------------------------------------------------------------------------------
-
- void load_control()
- {
- if (sol_watts < MIN_SOL_WATTS) // load will on when night
- {
- if(bat_volts >LVD) // check if battery is healthy
- {
- load_status=1;
- digitalWrite(LOAD_PIN, LOW); // load is ON
- }
- else if(bat_volts < LVD)
- {
- load_status=0;
- digitalWrite(LOAD_PIN, HIGH); //load is OFF
- }
- }
- else // load will off during day
- {
- load_status=0;
- digitalWrite(LOAD_PIN, HIGH);
- }
- }
- //-------------------------------------------------------------------------------------------------
- //---------------------------------Led Indication--------------------------------------------------
- //-------------------------------------------------------------------------------------------------
- void led_output(void)
- {
- if(bat_volts > 14.1 )
- {
- leds_off_all();
- digitalWrite(LED_YELLOW, HIGH);
- }
- else if(bat_volts > 11.9 && bat_volts < 14.1)
- {
- leds_off_all();
- digitalWrite(LED_GREEN, HIGH);
- }
- else if(bat_volts < 11.8)
- {
- leds_off_all;
- digitalWrite(LED_RED, HIGH);
- }
-
- }
- //------------------------------------------------------------------------------------------------------
- //
- // This function is used to turn all the leds off
- //
- //------------------------------------------------------------------------------------------------------
- void leds_off_all(void)
- {
- digitalWrite(LED_GREEN, LOW);
- digitalWrite(LED_RED, LOW);
- digitalWrite(LED_YELLOW, LOW);
- }
- //------------------------------------------------------------------------------------------------------
- //-------------------------- LCD DISPLAY --------------------------------------------------------------
- //-------------------------------------------------------------------------------------------------------
- void lcd_display()
- {
- back_light_pin_State = digitalRead(BACK_LIGHT_PIN);
- if (back_light_pin_State == HIGH)
- {
- lcd.backlight();// finish with backlight on
- // Wait for 10 seconds and then turn off the display and backlight.
- delay(15000);
- lcd.noBacklight();
- }
-
- lcd.setCursor(0, 0);
- lcd.print("SOL");
- lcd.setCursor(4, 0);
- lcd.write(1);
- lcd.setCursor(0, 1);
- lcd.print(sol_volts);
- lcd.print("V");
- lcd.setCursor(0, 2);
- lcd.print(sol_amps);
- lcd.print("A");
- lcd.setCursor(0, 3);
- lcd.print(sol_watts);
- lcd.print("W ");
- lcd.setCursor(8, 0);
- lcd.print("BAT");
- lcd.setCursor(12, 0);
- lcd.write(2);
- lcd.setCursor(8, 1);
- lcd.print(bat_volts);
- lcd.setCursor(8,2);
-
- if (charger_state == on)
- lcd.print("on");
- else if (charger_state == off)
- lcd.print("off");
- else if (charger_state == bulk)
- lcd.print("bulk");
- else if (charger_state == bat_float)
- lcd.print("float");
-
- //-----------------------------------------------------------
- //--------------------Battery State Of Charge ---------------
- //-----------------------------------------------------------
- lcd.setCursor(8,3);
- if ( bat_volts >= 12.7)
- lcd.print( "100%");
- else if (bat_volts >= 12.5 && bat_volts < 12.7)
- lcd.print( "90%");
- else if (bat_volts >= 12.42 && bat_volts < 12.5)
- lcd.print( "80%");
- else if (bat_volts >= 12.32 && bat_volts < 12.42)
- lcd.print( "70%");
- else if (bat_volts >= 12.2 && bat_volts < 12.32)
- lcd.print( "60%");
- else if (bat_volts >= 12.06 && bat_volts < 12.2)
- lcd.print( "50%");
- else if (bat_volts >= 11.90 && bat_volts < 12.06)
- lcd.print( "40%");
- else if (bat_volts >= 11.75 && bat_volts < 11.90)
- lcd.print( "30%");
- else if (bat_volts >= 11.58 && bat_volts < 11.75)
- lcd.print( "20%");
- else if (bat_volts >= 11.31 && bat_volts < 11.58)
- lcd.print( "10%");
- else if (bat_volts < 11.3)
- lcd.print( "0%");
-
- //---------------------------------------------------------------------
- //------------------Duty Cycle-----------------------------------------
- //---------------------------------------------------------------------
- lcd.setCursor(15,0);
- lcd.print("PWM");
- lcd.setCursor(19,0);
- lcd.write(3);
- lcd.setCursor(15,1);
- lcd.print(pwm);
- lcd.print("%");
- //----------------------------------------------------------------------
- //------------------------Load Status-----------------------------------
- //----------------------------------------------------------------------
- lcd.setCursor(15,2);
- lcd.print("Load");
- lcd.setCursor(15,3);
- if (load_status == 1)
- {
- lcd.print("On");
- }
- else
- {
- lcd.print("Off");
- }
- }
|