/** ****************************************************************************** * @file stm8s_i2c.h * @author MCD Application Team * @version V2.3.0 * @date 16-June-2017 * @brief This file contains all functions prototype and macros for the I2C peripheral. ****************************************************************************** * @attention * *

© COPYRIGHT 2014 STMicroelectronics

* * Licensed under MCD-ST Liberty SW License Agreement V2, (the "License"); * You may not use this file except in compliance with the License. * You may obtain a copy of the License at: * * http://www.st.com/software_license_agreement_liberty_v2 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. * ****************************************************************************** */ /* Define to prevent recursive inclusion -------------------------------------*/ #ifndef __STM8S_I2C_H #define __STM8S_I2C_H /* Includes ------------------------------------------------------------------*/ #include "stm8s.h" /* Exported types ------------------------------------------------------------*/ /** @addtogroup I2C_Exported_Types * @{ */ /** * @brief I2C duty cycle (fast mode only) */ typedef enum { I2C_DUTYCYCLE_2 = (uint8_t)0x00, /*!< Fast mode Tlow/THigh = 2 */ I2C_DUTYCYCLE_16_9 = (uint8_t)0x40 /*!< Fast mode Tlow/Thigh = 16/9 */ } I2C_DutyCycle_TypeDef; /** * @brief I2C Acknowledgement configuration */ typedef enum { I2C_ACK_NONE = (uint8_t)0x00, /*!< No acknowledge */ I2C_ACK_CURR = (uint8_t)0x01, /*!< Acknowledge on the current byte */ I2C_ACK_NEXT = (uint8_t)0x02 /*!< Acknowledge on the next byte */ } I2C_Ack_TypeDef; /** * @brief I2C Addressing Mode (slave mode only) */ typedef enum { I2C_ADDMODE_7BIT = (uint8_t)0x00, /*!< 7-bit slave address (10-bit address not acknowledged) */ I2C_ADDMODE_10BIT = (uint8_t)0x80 /*!< 10-bit slave address (7-bit address not acknowledged) */ } I2C_AddMode_TypeDef; /** * @brief I2C Interrupt sources * Warning: the values correspond to the bit position in the ITR register */ typedef enum { I2C_IT_ERR = (uint8_t)0x01, /*!< Error Interruption */ I2C_IT_EVT = (uint8_t)0x02, /*!< Event Interruption */ I2C_IT_BUF = (uint8_t)0x04 /*!< Buffer Interruption */ } I2C_IT_TypeDef; /** * @brief I2C transfer direction * Warning: the values correspond to the ADD0 bit position in the OARL register */ typedef enum { I2C_DIRECTION_TX = (uint8_t)0x00, /*!< Transmission direction */ I2C_DIRECTION_RX = (uint8_t)0x01 /*!< Reception direction */ } I2C_Direction_TypeDef; /** * @brief I2C Flags * @brief Elements values convention: 0xXXYY * X = SRx registers index * X = 1 : SR1 * X = 2 : SR2 * X = 3 : SR3 * Y = Flag mask in the register */ typedef enum { /* SR1 register flags */ I2C_FLAG_TXEMPTY = (uint16_t)0x0180, /*!< Transmit Data Register Empty flag */ I2C_FLAG_RXNOTEMPTY = (uint16_t)0x0140, /*!< Read Data Register Not Empty flag */ I2C_FLAG_STOPDETECTION = (uint16_t)0x0110, /*!< Stop detected flag */ I2C_FLAG_HEADERSENT = (uint16_t)0x0108, /*!< 10-bit Header sent flag */ I2C_FLAG_TRANSFERFINISHED = (uint16_t)0x0104, /*!< Data Byte Transfer Finished flag */ I2C_FLAG_ADDRESSSENTMATCHED = (uint16_t)0x0102, /*!< Address Sent/Matched (master/slave) flag */ I2C_FLAG_STARTDETECTION = (uint16_t)0x0101, /*!< Start bit sent flag */ /* SR2 register flags */ I2C_FLAG_WAKEUPFROMHALT = (uint16_t)0x0220, /*!< Wake Up From Halt Flag */ I2C_FLAG_OVERRUNUNDERRUN = (uint16_t)0x0208, /*!< Overrun/Underrun flag */ I2C_FLAG_ACKNOWLEDGEFAILURE = (uint16_t)0x0204, /*!< Acknowledge Failure Flag */ I2C_FLAG_ARBITRATIONLOSS = (uint16_t)0x0202, /*!< Arbitration Loss Flag */ I2C_FLAG_BUSERROR = (uint16_t)0x0201, /*!< Misplaced Start or Stop condition */ /* SR3 register flags */ I2C_FLAG_GENERALCALL = (uint16_t)0x0310, /*!< General Call header received Flag */ I2C_FLAG_TRANSMITTERRECEIVER = (uint16_t)0x0304, /*!< Transmitter Receiver Flag */ I2C_FLAG_BUSBUSY = (uint16_t)0x0302, /*!< Bus Busy Flag */ I2C_FLAG_MASTERSLAVE = (uint16_t)0x0301 /*!< Master Slave Flag */ } I2C_Flag_TypeDef; /** * @brief I2C Pending bits * Elements values convention: 0xXYZZ * X = SRx registers index * X = 1 : SR1 * X = 2 : SR2 * Y = Position of the corresponding Interrupt * ZZ = flag mask in the dedicated register(X register) */ typedef enum { /* SR1 register flags */ I2C_ITPENDINGBIT_TXEMPTY = (uint16_t)0x1680, /*!< Transmit Data Register Empty */ I2C_ITPENDINGBIT_RXNOTEMPTY = (uint16_t)0x1640, /*!< Read Data Register Not Empty */ I2C_ITPENDINGBIT_STOPDETECTION = (uint16_t)0x1210, /*!< Stop detected */ I2C_ITPENDINGBIT_HEADERSENT = (uint16_t)0x1208, /*!< 10-bit Header sent */ I2C_ITPENDINGBIT_TRANSFERFINISHED = (uint16_t)0x1204, /*!< Data Byte Transfer Finished */ I2C_ITPENDINGBIT_ADDRESSSENTMATCHED = (uint16_t)0x1202, /*!< Address Sent/Matched (master/slave) */ I2C_ITPENDINGBIT_STARTDETECTION = (uint16_t)0x1201, /*!< Start bit sent */ /* SR2 register flags */ I2C_ITPENDINGBIT_WAKEUPFROMHALT = (uint16_t)0x2220, /*!< Wake Up From Halt */ I2C_ITPENDINGBIT_OVERRUNUNDERRUN = (uint16_t)0x2108, /*!< Overrun/Underrun */ I2C_ITPENDINGBIT_ACKNOWLEDGEFAILURE = (uint16_t)0x2104, /*!< Acknowledge Failure */ I2C_ITPENDINGBIT_ARBITRATIONLOSS = (uint16_t)0x2102, /*!< Arbitration Loss */ I2C_ITPENDINGBIT_BUSERROR = (uint16_t)0x2101 /*!< Misplaced Start or Stop condition */ } I2C_ITPendingBit_TypeDef; /** * @brief I2C possible events * Values convention: 0xXXYY * XX = Event SR3 corresponding value * YY = Event SR1 corresponding value * @note if Event = EV3_2 the rule above does not apply * YY = Event SR2 corresponding value */ typedef enum { /*======================================== I2C Master Events (Events grouped in order of communication) ==========================================*/ /** * @brief Communication start * * After sending the START condition (I2C_GenerateSTART() function) the master * has to wait for this event. It means that the Start condition has been correctly * released on the I2C bus (the bus is free, no other devices is communicating). * */ /* --EV5 */ I2C_EVENT_MASTER_MODE_SELECT = (uint16_t)0x0301, /*!< BUSY, MSL and SB flag */ /** * @brief Address Acknowledge * * After checking on EV5 (start condition correctly released on the bus), the * master sends the address of the slave(s) with which it will communicate * (I2C_Send7bitAddress() function, it also determines the direction of the communication: * Master transmitter or Receiver). * Then the master has to wait that a slave acknowledges his address. * If an acknowledge is sent on the bus, one of the following events will * be set: * * 1) In case of Master Receiver (7-bit addressing): * the I2C_EVENT_MASTER_RECEIVER_MODE_SELECTED event is set. * * 2) In case of Master Transmitter (7-bit addressing): * the I2C_EVENT_MASTER_TRANSMITTER_MODE_SELECTED is set * * 3) In case of 10-Bit addressing mode, the master (just after generating the START * and checking on EV5) has to send the header of 10-bit addressing mode (I2C_SendData() * function). * Then master should wait on EV9. It means that the 10-bit addressing * header has been correctly sent on the bus. * Then master should send the second part of the 10-bit address (LSB) using * the function I2C_Send7bitAddress(). Then master should wait for event EV6. * */ /* --EV6 */ I2C_EVENT_MASTER_TRANSMITTER_MODE_SELECTED = (uint16_t)0x0782, /*!< BUSY, MSL, ADDR, TXE and TRA flags */ I2C_EVENT_MASTER_RECEIVER_MODE_SELECTED = (uint16_t)0x0302, /*!< BUSY, MSL and ADDR flags */ /* --EV9 */ I2C_EVENT_MASTER_MODE_ADDRESS10 = (uint16_t)0x0308, /*!< BUSY, MSL and ADD10 flags */ /** * @brief Communication events * * If a communication is established (START condition generated and slave address * acknowledged) then the master has to check on one of the following events for * communication procedures: * * 1) Master Receiver mode: The master has to wait on the event EV7 then to read * the data received from the slave (I2C_ReceiveData() function). * * 2) Master Transmitter mode: The master has to send data (I2C_SendData() * function) then to wait on event EV8 or EV8_2. * These two events are similar: * - EV8 means that the data has been written in the data register and is * being shifted out. * - EV8_2 means that the data has been physically shifted out and output * on the bus. * In most cases, using EV8 is sufficient for the application. * Using EV8_2 leads to a slower communication but ensures more reliable test. * EV8_2 is also more suitable than EV8 for testing on the last data transmission * (before Stop condition generation). * * @note In case the user software does not guarantee that this event EV7 is * managed before the current byte end of transfer, then user may check on EV7 * and BTF flag at the same time (ie. (I2C_EVENT_MASTER_BYTE_RECEIVED | I2C_FLAG_BTF)). * In this case the communication may be slower. * */ /* Master RECEIVER mode -----------------------------*/ /* --EV7 */ I2C_EVENT_MASTER_BYTE_RECEIVED = (uint16_t)0x0340, /*!< BUSY, MSL and RXNE flags */ /* Master TRANSMITTER mode --------------------------*/ /* --EV8 */ I2C_EVENT_MASTER_BYTE_TRANSMITTING = (uint16_t)0x0780, /*!< TRA, BUSY, MSL, TXE flags */ /* --EV8_2 */ I2C_EVENT_MASTER_BYTE_TRANSMITTED = (uint16_t)0x0784, /*!< EV8_2: TRA, BUSY, MSL, TXE and BTF flags */ /*======================================== I2C Slave Events (Events grouped in order of communication) ==========================================*/ /** * @brief Communication start events * * Wait on one of these events at the start of the communication. It means that * the I2C peripheral detected a Start condition on the bus (generated by master * device) followed by the peripheral address. * The peripheral generates an ACK condition on the bus (if the acknowledge * feature is enabled through function I2C_AcknowledgeConfig()) and the events * listed above are set : * * 1) In normal case (only one address managed by the slave), when the address * sent by the master matches the own address of the peripheral (configured by * I2C_OwnAddress1 field) the I2C_EVENT_SLAVE_XXX_ADDRESS_MATCHED event is set * (where XXX could be TRANSMITTER or RECEIVER). * * 2) In case the address sent by the master is General Call (address 0x00) and * if the General Call is enabled for the peripheral (using function I2C_GeneralCallCmd()) * the following event is set I2C_EVENT_SLAVE_GENERALCALLADDRESS_MATCHED. * */ /* --EV1 (all the events below are variants of EV1) */ /* 1) Case of One Single Address managed by the slave */ I2C_EVENT_SLAVE_RECEIVER_ADDRESS_MATCHED = (uint16_t)0x0202, /*!< BUSY and ADDR flags */ I2C_EVENT_SLAVE_TRANSMITTER_ADDRESS_MATCHED = (uint16_t)0x0682, /*!< TRA, BUSY, TXE and ADDR flags */ /* 2) Case of General Call enabled for the slave */ I2C_EVENT_SLAVE_GENERALCALLADDRESS_MATCHED = (uint16_t)0x1200, /*!< EV2: GENCALL and BUSY flags */ /** * @brief Communication events * * Wait on one of these events when EV1 has already been checked : * * - Slave RECEIVER mode: * - EV2: When the application is expecting a data byte to be received. * - EV4: When the application is expecting the end of the communication: * master sends a stop condition and data transmission is stopped. * * - Slave Transmitter mode: * - EV3: When a byte has been transmitted by the slave and the application * is expecting the end of the byte transmission. * The two events I2C_EVENT_SLAVE_BYTE_TRANSMITTED and I2C_EVENT_SLAVE_BYTE_TRANSMITTING * are similar. The second one can optionally be used when the user software * doesn't guarantee the EV3 is managed before the current byte end of transfer. * - EV3_2: When the master sends a NACK in order to tell slave that data transmission * shall end (before sending the STOP condition). * In this case slave has to stop sending data bytes and expect a Stop * condition on the bus. * * @note In case the user software does not guarantee that the event EV2 is * managed before the current byte end of transfer, then user may check on EV2 * and BTF flag at the same time (ie. (I2C_EVENT_SLAVE_BYTE_RECEIVED | I2C_FLAG_BTF)). * In this case the communication may be slower. * */ /* Slave RECEIVER mode --------------------------*/ /* --EV2 */ I2C_EVENT_SLAVE_BYTE_RECEIVED = (uint16_t)0x0240, /*!< BUSY and RXNE flags */ /* --EV4 */ I2C_EVENT_SLAVE_STOP_DETECTED = (uint16_t)0x0010, /*!< STOPF flag */ /* Slave TRANSMITTER mode -----------------------*/ /* --EV3 */ I2C_EVENT_SLAVE_BYTE_TRANSMITTED = (uint16_t)0x0684, /*!< TRA, BUSY, TXE and BTF flags */ I2C_EVENT_SLAVE_BYTE_TRANSMITTING = (uint16_t)0x0680, /*!< TRA, BUSY and TXE flags */ /* --EV3_2 */ I2C_EVENT_SLAVE_ACK_FAILURE = (uint16_t)0x0004 /*!< AF flag */ } I2C_Event_TypeDef; /** * @} */ /* Exported constants --------------------------------------------------------*/ /** @addtogroup I2C_Exported_Constants * @{ */ #define I2C_MAX_STANDARD_FREQ ((uint32_t)100000) #define I2C_MAX_FAST_FREQ ((uint32_t)400000) #if defined(STM8S208) || defined(STM8S207) || defined(STM8S007) #define I2C_MAX_INPUT_FREQ ((uint8_t)24) #else #define I2C_MAX_INPUT_FREQ ((uint8_t)16) #endif /** * @} */ /* Exported macros -----------------------------------------------------------*/ /* Private macros ------------------------------------------------------------*/ /** @addtogroup I2C_Private_Macros * @{ */ /** * @brief Macro used by the assert function to check the different functions parameters. */ /** * @brief Macro used by the assert function to check the different I2C duty cycles. */ #define IS_I2C_DUTYCYCLE_OK(DUTY) \ (((DUTY) == I2C_DUTYCYCLE_2) || \ ((DUTY) == I2C_DUTYCYCLE_16_9)) /** * @brief Macro used by the assert function to check the different acknowledgement configuration */ #define IS_I2C_ACK_OK(ACK) \ (((ACK) == I2C_ACK_NONE) || \ ((ACK) == I2C_ACK_CURR) || \ ((ACK) == I2C_ACK_NEXT)) /** * @brief Macro used by the assert function to check the different I2C addressing modes. */ #define IS_I2C_ADDMODE_OK(ADDMODE) \ (((ADDMODE) == I2C_ADDMODE_7BIT) || \ ((ADDMODE) == I2C_ADDMODE_10BIT)) /** * @brief Macro used by the assert function to check the different I2C interrupt types. */ #define IS_I2C_INTERRUPT_OK(IT) \ (((IT) == I2C_IT_ERR) || \ ((IT) == I2C_IT_EVT) || \ ((IT) == I2C_IT_BUF) || \ ((IT) == (I2C_IT_ERR | I2C_IT_EVT)) || \ ((IT) == (I2C_IT_ERR | I2C_IT_BUF)) || \ ((IT) == (I2C_IT_EVT | I2C_IT_BUF)) || \ ((IT) == (I2C_IT_EVT | I2C_IT_BUF | I2C_IT_ERR))) /** * @brief Macro used by the assert function to check the different I2C communcation direction. */ #define IS_I2C_DIRECTION_OK(DIR) \ (((DIR) == I2C_DIRECTION_TX) || \ ((DIR) == I2C_DIRECTION_RX)) /** * @brief Macro used by the assert function to check the different I2C flags. */ #define IS_I2C_FLAG_OK(FLAG) \ (((FLAG) == I2C_FLAG_TXEMPTY) || \ ((FLAG) == I2C_FLAG_RXNOTEMPTY) || \ ((FLAG) == I2C_FLAG_STOPDETECTION) || \ ((FLAG) == I2C_FLAG_HEADERSENT) || \ ((FLAG) == I2C_FLAG_TRANSFERFINISHED) || \ ((FLAG) == I2C_FLAG_ADDRESSSENTMATCHED) || \ ((FLAG) == I2C_FLAG_STARTDETECTION) || \ ((FLAG) == I2C_FLAG_WAKEUPFROMHALT) || \ ((FLAG) == I2C_FLAG_OVERRUNUNDERRUN) || \ ((FLAG) == I2C_FLAG_ACKNOWLEDGEFAILURE) || \ ((FLAG) == I2C_FLAG_ARBITRATIONLOSS) || \ ((FLAG) == I2C_FLAG_BUSERROR) || \ ((FLAG) == I2C_FLAG_GENERALCALL) || \ ((FLAG) == I2C_FLAG_TRANSMITTERRECEIVER) || \ ((FLAG) == I2C_FLAG_BUSBUSY) || \ ((FLAG) == I2C_FLAG_MASTERSLAVE)) /** * @brief Macro used by the assert function to check the I2C flags to clear. */ #define IS_I2C_CLEAR_FLAG_OK(FLAG) ((((uint16_t)(FLAG) & (uint16_t)0xFD00) == 0x00) \ && ((uint16_t)(FLAG) != 0x00)) /** * @brief Macro used by the assert function to check the different I2C possible pending bits. */ #define IS_I2C_ITPENDINGBIT_OK(ITPENDINGBIT) \ (((ITPENDINGBIT) == I2C_ITPENDINGBIT_TXEMPTY) || \ ((ITPENDINGBIT) == I2C_ITPENDINGBIT_RXNOTEMPTY) || \ ((ITPENDINGBIT) == I2C_ITPENDINGBIT_STOPDETECTION) || \ ((ITPENDINGBIT) == I2C_ITPENDINGBIT_HEADERSENT) || \ ((ITPENDINGBIT) == I2C_ITPENDINGBIT_TRANSFERFINISHED) || \ ((ITPENDINGBIT) == I2C_ITPENDINGBIT_ADDRESSSENTMATCHED) || \ ((ITPENDINGBIT) == I2C_ITPENDINGBIT_STARTDETECTION) || \ ((ITPENDINGBIT) == I2C_ITPENDINGBIT_WAKEUPFROMHALT) || \ ((ITPENDINGBIT) == I2C_ITPENDINGBIT_OVERRUNUNDERRUN) || \ ((ITPENDINGBIT) == I2C_ITPENDINGBIT_ACKNOWLEDGEFAILURE) || \ ((ITPENDINGBIT) == I2C_ITPENDINGBIT_ARBITRATIONLOSS) || \ ((ITPENDINGBIT) == I2C_ITPENDINGBIT_BUSERROR)) /** * @brief Macro used by the assert function to check the different I2C possible * pending bits to clear by writing 0. */ #define IS_I2C_CLEAR_ITPENDINGBIT_OK(ITPENDINGBIT) \ (((ITPENDINGBIT) == I2C_ITPENDINGBIT_WAKEUPFROMHALT) || \ ((ITPENDINGBIT) == I2C_ITPENDINGBIT_OVERRUNUNDERRUN) || \ ((ITPENDINGBIT) == I2C_ITPENDINGBIT_ACKNOWLEDGEFAILURE) || \ ((ITPENDINGBIT) == I2C_ITPENDINGBIT_ARBITRATIONLOSS) || \ ((ITPENDINGBIT) == I2C_ITPENDINGBIT_BUSERROR)) /** * @brief Macro used by the assert function to check the different I2C possible events. */ #define IS_I2C_EVENT_OK(EVENT) (((EVENT) == I2C_EVENT_SLAVE_TRANSMITTER_ADDRESS_MATCHED) || \ ((EVENT) == I2C_EVENT_SLAVE_RECEIVER_ADDRESS_MATCHED) || \ ((EVENT) == I2C_EVENT_SLAVE_GENERALCALLADDRESS_MATCHED) || \ ((EVENT) == I2C_EVENT_SLAVE_BYTE_RECEIVED) || \ ((EVENT) == (I2C_EVENT_SLAVE_BYTE_RECEIVED | (uint16_t)I2C_FLAG_GENERALCALL)) || \ ((EVENT) == I2C_EVENT_SLAVE_BYTE_TRANSMITTED) || \ ((EVENT) == (I2C_EVENT_SLAVE_BYTE_TRANSMITTED | (uint16_t)I2C_FLAG_GENERALCALL)) || \ ((EVENT) == I2C_EVENT_SLAVE_ACK_FAILURE) || \ ((EVENT) == I2C_EVENT_SLAVE_STOP_DETECTED) || \ ((EVENT) == I2C_EVENT_MASTER_MODE_SELECT) || \ ((EVENT) == I2C_EVENT_MASTER_TRANSMITTER_MODE_SELECTED) || \ ((EVENT) == I2C_EVENT_MASTER_RECEIVER_MODE_SELECTED) || \ ((EVENT) == I2C_EVENT_MASTER_BYTE_RECEIVED) || \ ((EVENT) == I2C_EVENT_MASTER_BYTE_TRANSMITTED) || \ ((EVENT) == I2C_EVENT_MASTER_BYTE_TRANSMITTING) || \ ((EVENT) == I2C_EVENT_MASTER_MODE_ADDRESS10)) /** * @brief Macro used by the assert function to check the different I2C possible own address. */ #define IS_I2C_OWN_ADDRESS_OK(ADDRESS) \ ((ADDRESS) <= (uint16_t)0x03FF) /* The address must be even */ #define IS_I2C_ADDRESS_OK(ADD) \ (((ADD) & (uint8_t)0x01) == (uint8_t)0x00) /** * @brief Macro used by the assert function to check that I2C Input clock frequency must be between 1MHz and 50MHz. */ #define IS_I2C_INPUT_CLOCK_FREQ_OK(FREQ) \ (((FREQ) >= (uint8_t)1) && ((FREQ) <= I2C_MAX_INPUT_FREQ)) /** * @brief Macro used by the assert function to check that I2C Output clock frequency must be between 1Hz and 400kHz. */ #define IS_I2C_OUTPUT_CLOCK_FREQ_OK(FREQ) \ (((FREQ) >= (uint8_t)1) && ((FREQ) <= I2C_MAX_FAST_FREQ)) /** * @} */ /* Exported functions ------------------------------------------------------- */ /** @addtogroup I2C_Exported_Functions * @{ */ void I2C_DeInit(void); void I2C_Init(uint32_t OutputClockFrequencyHz, uint16_t OwnAddress, I2C_DutyCycle_TypeDef I2C_DutyCycle, I2C_Ack_TypeDef Ack, I2C_AddMode_TypeDef AddMode, uint8_t InputClockFrequencyMHz ); void I2C_Cmd(FunctionalState NewState); void I2C_GeneralCallCmd(FunctionalState NewState); void I2C_GenerateSTART(FunctionalState NewState); void I2C_GenerateSTOP(FunctionalState NewState); void I2C_SoftwareResetCmd(FunctionalState NewState); void I2C_StretchClockCmd(FunctionalState NewState); void I2C_AcknowledgeConfig(I2C_Ack_TypeDef Ack); void I2C_FastModeDutyCycleConfig(I2C_DutyCycle_TypeDef I2C_DutyCycle); void I2C_ITConfig(I2C_IT_TypeDef I2C_IT, FunctionalState NewState); uint8_t I2C_ReceiveData(void); void I2C_Send7bitAddress(uint8_t Address, I2C_Direction_TypeDef Direction); void I2C_SendData(uint8_t Data); /** * @brief **************************************************************************************** * * I2C State Monitoring Functions * **************************************************************************************** * This I2C driver provides three different ways for I2C state monitoring * depending on the application requirements and constraints: * * * 1) Basic state monitoring: * Using I2C_CheckEvent() function: * It compares the status registers (SR1, SR2 and SR3) content to a given event * (can be the combination of one or more flags). * It returns SUCCESS if the current status includes the given flags * and returns ERROR if one or more flags are missing in the current status. * - When to use: * - This function is suitable for most applications as well as for startup * activity since the events are fully described in the product reference manual * (RM0016). * - It is also suitable for users who need to define their own events. * - Limitations: * - If an error occurs (ie. error flags are set besides to the monitored flags), * the I2C_CheckEvent() function may return SUCCESS despite the communication * hold or corrupted real state. * In this case, it is advised to use error interrupts to monitor the error * events and handle them in the interrupt IRQ handler. * * @note * For error management, it is advised to use the following functions: * - I2C_ITConfig() to configure and enable the error interrupts (I2C_IT_ERR). * - I2C_IRQHandler() which is called when the I2C interrupts occur. * - I2C_GetFlagStatus() or I2C_GetITStatus() to be called into the * I2Cx_IRQHandler() function in order to determine which error occurred. * - I2C_ClearFlag() or I2C_ClearITPendingBit() and/or I2C_SoftwareResetCmd() * and/or I2C_GenerateStop() in order to clear the error flag and * source and return to correct communication status. * * * 2) Advanced state monitoring: * Using the function I2C_GetLastEvent() which returns the image of both SR1 * & SR3 status registers in a single word (uint16_t) (Status Register 3 value * is shifted left by 8 bits and concatenated to Status Register 1). * - When to use: * - This function is suitable for the same applications above but it allows to * overcome the limitations of I2C_GetFlagStatus() function (see below). * The returned value could be compared to events already defined in the * library (stm8s_i2c.h) or to custom values defined by user. * - This function is suitable when multiple flags are monitored at the same time. * - At the opposite of I2C_CheckEvent() function, this function allows user to * choose when an event is accepted (when all events flags are set and no * other flags are set or just when the needed flags are set like * I2C_CheckEvent() function). * - Limitations: * - User may need to define his own events. * - Same remark concerning the error management is applicable for this * function if user decides to check only regular communication flags (and * ignores error flags). * * * 3) Flag-based state monitoring: * Using the function I2C_GetFlagStatus() which simply returns the status of * one single flag (ie. I2C_FLAG_RXNE ...). * - When to use: * - This function could be used for specific applications or in debug phase. * - It is suitable when only one flag checking is needed (most I2C events * are monitored through multiple flags). * - Limitations: * - When calling this function, the Status register is accessed. Some flags are * cleared when the status register is accessed. So checking the status * of one Flag, may clear other ones. * - Function may need to be called twice or more in order to monitor one * single event. * */ /** * * 1) Basic state monitoring ******************************************************************************* */ ErrorStatus I2C_CheckEvent(I2C_Event_TypeDef I2C_Event); /** * * 2) Advanced state monitoring ******************************************************************************* */ I2C_Event_TypeDef I2C_GetLastEvent(void); /** * * 3) Flag-based state monitoring ******************************************************************************* */ FlagStatus I2C_GetFlagStatus(I2C_Flag_TypeDef I2C_Flag); /** * ******************************************************************************* */ void I2C_ClearFlag(I2C_Flag_TypeDef I2C_FLAG); ITStatus I2C_GetITStatus(I2C_ITPendingBit_TypeDef I2C_ITPendingBit); void I2C_ClearITPendingBit(I2C_ITPendingBit_TypeDef I2C_ITPendingBit); /** * @} */ #endif /* __STM8S_I2C_H */ /************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/