main.c 11 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510
  1. #include "main.h"
  2. __C_task void main(void)
  3. {
  4. uint8_t i;
  5. //uint8_t tmp8;
  6. /* Disable comaparator */
  7. ACSR = 1<<ACD;
  8. /* Init LED */
  9. LED_DDR = LED_1 | LED_2;
  10. LED_OFF(LED_1);
  11. LED_OFF(LED_2);
  12. /* Init 7 segment LED indicators */
  13. INDCTR_SEGMENT_DDR = 0xFF; // segment pins to output
  14. INDCTR_SEGMENT_PORT = 0x00; // off all segment
  15. INDCTR_COMMON_DDR = INDCTR_COMMON_ALL; // common pins to output
  16. INDCTR_COMMON_PORT = ~INDCTR_COMMON_ALL; // off all indikators
  17. for(i=0; i<INDCTR_NUMS; i++) {
  18. Display[i] = Sym_minus;
  19. }
  20. Flag.needDot = 0;
  21. /* Timer0 every 4 ms switch showing LED */
  22. TCCR0 = TIM0_PRESCALER;
  23. TCNT0 = TIM0_CNT; // load timer
  24. TIMSK |= 1<<TOIE0; // enable TIM0_OVF interrupt
  25. /* Timer1 ticks with 1 MHz frequency for DS18B20 delays */
  26. TCCR1B = TIM1_PRESCALER;
  27. // TCNT1 = 64536;
  28. // TIMSK |= 1<<TOIE1; // enable TIM1_OVF interrupt
  29. /* ADC init */
  30. resultADC = 0;
  31. ADMUX = (1<<REFS0) | (1<<ADLAR); // Vref = AVcc, channel ADC0, Left adjusted result
  32. ADCSR = 1<<ADEN | 1<<ADPS2 | 1<<ADPS1; // enable ADC, prescaler = 64
  33. /* I2C init */
  34. TWI_MasterInit(100);
  35. __enable_interrupt();
  36. /* Init Scheduler and TDelay */
  37. RTOS_Init();
  38. // Tasks for sheduler
  39. RTOS_SetTask(startADC,0,50);
  40. RTOS_SetTask(getTime,4,500);
  41. RTOS_SetTask(showHHMM,8,500);
  42. RTOS_SetTask(ds18b20_StartMeasure,12,10000);
  43. State = show_HHMM;
  44. while(1) {
  45. /* check time */
  46. if (1 == Flag.newTime) {
  47. Flag.newTime = 0;
  48. if (show_HHMM == State) {
  49. // every 25 and 55 seconds shoe temperature for 5 seconds
  50. if ((25 == Clock.seconds) || (55 == Clock.seconds)) {
  51. RTOS_SetTask(showHHMM,5000,500);
  52. RTOS_SetTask(showTEMP,0,1000);
  53. }
  54. }
  55. }
  56. /* check buttons */
  57. if (1 == Flag.newBTN) {
  58. Flag.newBTN = 0;
  59. btn_t btn = getBTN();
  60. switch (btn) {
  61. case btn_1:
  62. // show HH:MM
  63. State = show_HHMM;
  64. RTOS_SetTask(showHHMM,0,500);
  65. break;
  66. case btn_2:
  67. // show MM SS
  68. State = show_MMSS;
  69. Flag.needDot = 0;
  70. RTOS_SetTask(showMMSS,0,500);
  71. break;
  72. case btn_3:
  73. // show temperature
  74. State = show_TEMP;
  75. Flag.needDot = 0;
  76. RTOS_SetTask(showTEMP,0,1000);
  77. break;
  78. case btn_4:
  79. // time --
  80. if (Clock.minutes > 0) {
  81. Clock.minutes --;
  82. } else {
  83. Clock.minutes = 59;
  84. if (Clock.hours > 0) {
  85. Clock.hours --;
  86. } else {
  87. Clock.hours = 23;
  88. }
  89. }
  90. break;
  91. case btn_5:
  92. // time ++
  93. Clock.minutes ++;
  94. if (Clock.minutes > 59) {
  95. Clock.minutes = 0;
  96. Clock.hours ++;
  97. if (Clock.hours > 23) {
  98. Clock.hours = 0;
  99. }
  100. }
  101. break;
  102. case btn_6:
  103. // save new time
  104. Flag.blankIndktr = 0;
  105. setTime();
  106. RTOS_SetTask(getTime,4,500);
  107. break;
  108. case btn_7:
  109. // time set
  110. Flag.blankIndktr = 1;
  111. RTOS_SetTask(getTime,0,0);
  112. break;
  113. default:
  114. break;
  115. }
  116. } // end of new BTN
  117. tdelay_ms(10); // sleep and rotate dispatcher
  118. } // end of while(1)
  119. } // end of main()
  120. /**
  121. * S u b r o u t i n e s
  122. */
  123. static void showHHMM(void) {
  124. State = show_HHMM;
  125. Display[0] = IndctrNums[(0x0F & (Clock.hours>>4))];
  126. Display[1] = IndctrNums[(0x0F & Clock.hours)];
  127. Display[2] = IndctrNums[(0x0F & (Clock.minutes>>4))];
  128. Display[3] = IndctrNums[(0x0F & Clock.minutes)];
  129. }
  130. static void showMMSS(void) {
  131. Display[0] = IndctrNums[(0x0F & (Clock.minutes>>4))];
  132. Display[1] = IndctrNums[(0x0F & Clock.minutes)];
  133. Display[2] = IndctrNums[(0x0F & (Clock.seconds>>4))];
  134. Display[3] = IndctrNums[(0x0F & Clock.seconds)];
  135. }
  136. static void showTEMP(void) {
  137. int8_t t = Temperature;
  138. if (t < 0) {
  139. Display[0] = Sym_blank;
  140. t = -t;
  141. } else {
  142. Display[0] = Sym_minus;
  143. }
  144. // convert to BCD
  145. t = ((t/10)<<4)|(t%10);
  146. Display[1] = IndctrNums[(0x0F & (t>>4))];
  147. Display[2] = IndctrNums[(0x0F & t)];
  148. Display[3] = Sym_gradus;
  149. Flag.needDot = 0;
  150. }
  151. static void startADC(void) {
  152. // enable interrupt and start conversion
  153. ADCSR |= ((1<<ADSC) | (1<<ADIE));
  154. }
  155. static btn_t getBTN(void) {
  156. uint8_t btn_code = resultADC;
  157. if (btn_code > 0xED) {
  158. return btn_no;
  159. } else if (btn_code > 0xD8) {
  160. return btn_1;
  161. } else if (btn_code > 0xD0) {
  162. return btn_2;
  163. } else if (btn_code > 0xC5) {
  164. return btn_3;
  165. } else if (btn_code > 0xB4) {
  166. return btn_4;
  167. } else if (btn_code > 0x94) {
  168. return btn_5;
  169. } else if (btn_code > 0x3F) {
  170. return btn_6;
  171. } else {
  172. return btn_7;
  173. }
  174. }
  175. static void getTime(void) {
  176. static uint8_t old_sec;
  177. /* Sync with indicators */
  178. Flag.waitIndktr = 1;
  179. while (Flag.waitIndktr == 1);
  180. /*устанавливаем указатель DS1307 на нулевой адрес*/
  181. twi_buf[0] = (DS1307_ADR<<1)|0; //адресный пакет
  182. twi_buf[1] = 0; //адрес регистра
  183. TWI_SendData(twi_buf, 2);
  184. /*считываем время с DS1307*/
  185. twi_buf[0] = (DS1307_ADR<<1)|1;
  186. TWI_SendData(twi_buf, 5);
  187. /*переписываем данные буфера драйвера в свой буфер*/
  188. TWI_GetData(twi_buf, 5);
  189. Clock.seconds = twi_buf[1];
  190. Clock.minutes = twi_buf[2];
  191. Clock.hours = twi_buf[3];
  192. if (show_HHMM == State) {
  193. if (old_sec != Clock.seconds) {
  194. Flag.needDot = 1;
  195. } else {
  196. Flag.needDot = 0;
  197. }
  198. }
  199. old_sec = Clock.seconds;
  200. Flag.newTime = 1;
  201. }
  202. static void setTime(void) {
  203. /* Sync with indicators */
  204. Flag.waitIndktr = 1;
  205. while (Flag.waitIndktr == 1);
  206. /* prepare new time */
  207. twi_buf[0] = (DS1307_ADR<<1)|0; //адресный пакет
  208. twi_buf[1] = 0; //адрес регистра
  209. twi_buf[2] = 0; //значение секунд
  210. twi_buf[3] = Clock.minutes; //значение минут
  211. twi_buf[4] = Clock.hours; //значение часов
  212. /* senr to rtc */
  213. TWI_SendData(twi_buf, 5);
  214. }
  215. /* DS18B20 functions */
  216. static uint8_t ds18b20_Reset(void) {
  217. uint8_t i;
  218. /* Pull line low and wait for 480uS */
  219. DS18B20_LOW;
  220. DS18B20_OUTPUT_MODE;
  221. //ds18b20_delay(us(480));
  222. TCNT1 = 0;
  223. while (TCNT1 <= 500) {
  224. }
  225. /* Release line and wait for 60uS */
  226. DS18B20_INPUT_MODE;
  227. //ds18b20_delay(us(60));
  228. TCNT1 = 0;
  229. while (TCNT1 <= 70) {
  230. }
  231. /* Store line value and wait until the completion of 480uS period */
  232. i = DS18B20_VALUE;
  233. //ds18b20_delay(us(420));
  234. //OCR1B = 420;
  235. TCNT1 = 0;
  236. while (TCNT1 <= 430) {
  237. }
  238. /* Return the value read from the presence pulse (0=OK, else=WRONG) */
  239. return i;
  240. }
  241. static void ds18b20_WriteBit(uint8_t bit) {
  242. /* Pull line low for 1uS */
  243. DS18B20_LOW;
  244. DS18B20_OUTPUT_MODE;
  245. //ds18b20_delay(us(1));
  246. TCNT1 = 0;
  247. while (TCNT1 <= 1);
  248. /* If we want to write 1, release the line (if not will keep low) */
  249. if(1 == bit) {
  250. DS18B20_INPUT_MODE;
  251. }
  252. /* Wait for 60uS and release the line */
  253. //ds18b20_delay(us(60));
  254. TCNT1 = 0;
  255. while (TCNT1 <= 60) {
  256. }
  257. DS18B20_INPUT_MODE;
  258. }
  259. static uint8_t ds18b20_ReadBit(void) {
  260. uint8_t bit=0;
  261. /* Pull line low for 1uS */
  262. DS18B20_LOW;
  263. DS18B20_OUTPUT_MODE;
  264. //ds18b20_delay(us(1));
  265. TCNT1 = 0;
  266. while (TCNT1 <= 1);
  267. /* Release line and wait for 14uS */
  268. DS18B20_INPUT_MODE;
  269. //ds18b20_delay(us(14));
  270. TCNT1 = 0;
  271. while (TCNT1 <= 14) {
  272. }
  273. /* Read line value */
  274. if (DS18B20_VALUE != 0) {
  275. bit = 0x80;
  276. }
  277. /* Wait for 45uS to end and return read value */
  278. //ds18b20_delay(us(45));
  279. TCNT1 = 0;
  280. while (TCNT1 <= 45) {
  281. }
  282. return bit;
  283. }
  284. static uint8_t ds18b20_ReadByte(void) {
  285. uint8_t i=8, n=0;
  286. while (i--) {
  287. /* Shift one position right and store read value */
  288. n >>= 1;
  289. n |= ds18b20_ReadBit();
  290. }
  291. return n;
  292. }
  293. static void ds18b20_WriteByte(uint8_t byte) {
  294. uint8_t i=8;
  295. while (i--) {
  296. /* Write actual bit and shift one position right to make the next bit ready */
  297. ds18b20_WriteBit(byte & 0x01);
  298. byte >>= 1;
  299. }
  300. }
  301. static void ds18b20_StartMeasure(void) {
  302. /* Sync with indicators */
  303. Flag.waitIndktr = 1;
  304. while (Flag.waitIndktr == 1);
  305. /* Reset, skip ROM and start temperature conversion */
  306. if (ds18b20_Reset() != 0) {
  307. Temperature = -99;
  308. Flag.newTemp = 1;
  309. } else {
  310. ds18b20_WriteByte(DS18B20_CMD_SKIPROM);
  311. ds18b20_WriteByte(DS18B20_CMD_CONVERTTEMP);
  312. RTOS_SetTask(ds18b20_ReadTemperature, 800, 0);
  313. }
  314. }
  315. static void ds18b20_ReadTemperature(void) {
  316. uint8_t temperature[2];
  317. uint8_t decimal;
  318. /* Sync with indicators */
  319. Flag.waitIndktr = 1;
  320. while (Flag.waitIndktr == 1);
  321. /* Reset, skip ROM and send command to read Scratchpad */
  322. if (ds18b20_Reset() != 0) {
  323. Temperature = -98;
  324. } else {
  325. ds18b20_WriteByte(DS18B20_CMD_SKIPROM);
  326. ds18b20_WriteByte(DS18B20_CMD_RSCRATCHPAD);
  327. /* Read Scratchpad (only 2 first bytes) */
  328. temperature[0]=ds18b20_ReadByte();
  329. temperature[1]=ds18b20_ReadByte();
  330. //ds18b20_reset();
  331. /* Store temperature integer digits */
  332. Temperature = ((temperature[1]&0x7)<<4) | (temperature[0]>>4);
  333. // get decimal part
  334. decimal = (temperature[0] & 15);
  335. // convert to binary
  336. //decimal *= 10; //(tempDecimals << 1) + (tempDecimals << 3);// Умножаем на 10
  337. //decimal >>= 4; //(tempDecimals >> 4);//делим на 16 или умножаем на 0.0625
  338. // round integer part
  339. if (decimal > 7) {
  340. Temperature ++;
  341. }
  342. }
  343. Flag.newTemp = 1;
  344. }
  345. /**
  346. * I n t e r r u p t h a n d l e r s
  347. */
  348. #pragma vector=TIMER0_OVF_vect
  349. __interrupt void TIMER0_OVF_ISR(void) {
  350. static uint8_t indicator = 0;
  351. static uint8_t blank_time = 0; // blanking timer
  352. uint8_t flag = 1;
  353. TCNT0 = TIM0_CNT; // reload timer
  354. INDCTR_COMMON_PORT &= ~INDCTR_COMMON_ALL; // off all indikators
  355. Flag.waitIndktr = 0;
  356. if (1 == Flag.blankIndktr) {
  357. if (blank_time <= 200) {
  358. blank_time ++;
  359. flag = 1;
  360. } else if (blank_time <= 250) {
  361. blank_time ++;
  362. flag = 0;
  363. } else {
  364. blank_time = 0;
  365. flag = 1;
  366. }
  367. }
  368. if (1 == flag) {
  369. switch (indicator) {
  370. case 0:
  371. INDCTR_SEGMENT_PORT = Display[0];
  372. INDCTR_COMMON_PORT |= 0x01;
  373. indicator = 1;
  374. break;
  375. case 1:
  376. if (1 == Flag.needDot) {
  377. INDCTR_SEGMENT_PORT = Display[1] | Sym_dot;
  378. } else {
  379. INDCTR_SEGMENT_PORT = Display[1];
  380. }
  381. INDCTR_COMMON_PORT |= 0x02;
  382. indicator = 2;
  383. break;
  384. case 2:
  385. INDCTR_SEGMENT_PORT = Display[2];
  386. INDCTR_COMMON_PORT |= 0x04;
  387. indicator = 3;
  388. break;
  389. case 3:
  390. INDCTR_SEGMENT_PORT = Display[3];
  391. INDCTR_COMMON_PORT |= 0x08;
  392. default:
  393. indicator = 0;
  394. break;
  395. } // end of switch
  396. }
  397. }
  398. #pragma vector=TIMER1_COMPA_vect
  399. __interrupt void TIMER1_COMPA_ISR(void) {
  400. }
  401. #pragma vector=TIMER1_COMPB_vect
  402. __interrupt void TIMER1_COMPB_ISR(void) {
  403. }
  404. #pragma vector=TIMER1_OVF_vect
  405. __interrupt void TIMER1_OVF_ISR(void) {
  406. Flag.T1OC = 1;
  407. }
  408. #pragma vector=ADC_vect
  409. __interrupt void ADC_ISR(void) {
  410. resultADC = ADCH;
  411. ADCSR &= ~(1<<ADIE); // disable interrupt
  412. Flag.newBTN = 1;
  413. }