main.c 8.4 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389
  1. #include "main.h"
  2. __C_task void main(void)
  3. {
  4. uint8_t i;
  5. //uint8_t tmp8;
  6. /* Disable comaparator */
  7. ACSR = 1<<ACD;
  8. /* Init LED */
  9. LED_DDR = LED_1 | LED_2;
  10. LED_OFF(LED_1);
  11. LED_OFF(LED_2);
  12. /* Init 7 segment LED indicators */
  13. INDCTR_SEGMENT_DDR = 0xFF; // segment pins to output
  14. INDCTR_SEGMENT_PORT = 0x00; // off all segment
  15. INDCTR_COMMON_DDR = INDCTR_COMMON_ALL; // common pins to output
  16. INDCTR_COMMON_PORT = ~INDCTR_COMMON_ALL; // off all indikators
  17. for(i=0; i<INDCTR_NUMS; i++) {
  18. Display[i] = Sym_minus;
  19. }
  20. Flag.needDot = 0;
  21. /* Timer0 every 4 ms switch showing LED */
  22. TCCR0 = TIM0_PRESCALER;
  23. TCNT0 = TIM0_CNT; // load timer
  24. TIMSK |= 1<<TOIE0; // enable TIM0_OVF interrupt
  25. /* Timer1 ticks with 1 MHz frequency for DS18B20 delays */
  26. TCCR1B = TIM1_PRESCALER;
  27. // TCNT1 = 64536;
  28. // TIMSK |= 1<<TOIE1; // enable TIM1_OVF interrupt
  29. /* ADC init */
  30. resultADC = 0;
  31. ADMUX = (1<<REFS0) | (1<<ADLAR); // Vref = AVcc, channel ADC0, Left adjusted result
  32. ADCSR = 1<<ADEN | 1<<ADPS2 | 1<<ADPS1; // enable ADC, prescaler = 64
  33. /* I2C init */
  34. TWI_MasterInit(100);
  35. __enable_interrupt();
  36. /* Init Scheduler and TDelay */
  37. RTOS_Init();
  38. // Tasks for sheduler
  39. RTOS_SetTask(startADC,0,50);
  40. RTOS_SetTask(getTime,4,500);
  41. RTOS_SetTask(ds18b20_StartMeasure,8,10000);
  42. /* Get time */
  43. while(1) {
  44. /*
  45. if (1 == Flag.newTime) {
  46. Flag.newTime = 0;
  47. Display[0] = IndctrNums[(0x0F & (Clock.hours>>4))];
  48. Display[1] = IndctrNums[(0x0F & Clock.hours)];
  49. Display[2] = IndctrNums[(0x0F & (Clock.minutes>>4))];
  50. Display[3] = IndctrNums[(0x0F & Clock.minutes)];
  51. }
  52. */
  53. if (1 == Flag.newTemp) {
  54. Flag.newTemp = 0;
  55. if (Temperature < 0) {
  56. Display[0] = Sym_minus;
  57. } else {
  58. Display[0] = Sym_blank;
  59. }
  60. Display[1] = IndctrNums[(0x0F & (Temperature>>4))];
  61. Display[2] = IndctrNums[(0x0F & Temperature)];
  62. Display[3] = Sym_gradus;
  63. }
  64. if (1 == Flag.newBTN) {
  65. Flag.newBTN = 0;
  66. btn_t btn = getBTN();
  67. if (btn == btn_1) {
  68. LED_ON(LED_1);
  69. } else if (btn == btn_2) {
  70. LED_ON(LED_2);
  71. } else if (btn == btn_3) {
  72. LED_OFF(LED_1);
  73. } else if (btn == btn_4) {
  74. LED_OFF(LED_2);
  75. } else if (btn == btn_5) {
  76. LED_ON(LED_1);
  77. LED_ON(LED_2);
  78. } else if (btn == btn_6) {
  79. LED_OFF(LED_1);
  80. LED_OFF(LED_2);
  81. }
  82. }
  83. tdelay_ms(10); // sleep and rotate dispatcher
  84. } // end of while(1)
  85. } // end of main()
  86. /**
  87. * S u b r o u t i n e s
  88. */
  89. static void startADC(void) {
  90. // enable interrupt and start conversion
  91. ADCSR |= ((1<<ADSC) | (1<<ADIE));
  92. }
  93. static btn_t getBTN(void) {
  94. uint8_t btn_code = resultADC;
  95. if (btn_code > 0xED) {
  96. return btn_no;
  97. } else if (btn_code > 0xD8) {
  98. return btn_1;
  99. } else if (btn_code > 0xD0) {
  100. return btn_2;
  101. } else if (btn_code > 0xC5) {
  102. return btn_3;
  103. } else if (btn_code > 0xB4) {
  104. return btn_4;
  105. } else if (btn_code > 0x94) {
  106. return btn_5;
  107. } else if (btn_code > 0x3F) {
  108. return btn_6;
  109. } else {
  110. return btn_7;
  111. }
  112. }
  113. static void getTime(void) {
  114. static uint8_t old_sec;
  115. /*устанавливаем указатель DS1307 на нулевой адрес*/
  116. twi_buf[0] = (DS1307_ADR<<1)|0; //адресный пакет
  117. twi_buf[1] = 0; //адрес регистра
  118. TWI_SendData(twi_buf, 2);
  119. /*считываем время с DS1307*/
  120. twi_buf[0] = (DS1307_ADR<<1)|1;
  121. TWI_SendData(twi_buf, 5);
  122. /*переписываем данные буфера драйвера в свой буфер*/
  123. TWI_GetData(twi_buf, 5);
  124. Clock.seconds = twi_buf[1];
  125. Clock.minutes = twi_buf[2];
  126. Clock.hours = twi_buf[3];
  127. if (old_sec != Clock.seconds) {
  128. Flag.needDot = 1;
  129. old_sec = Clock.seconds;
  130. } else {
  131. Flag.needDot = 0;
  132. }
  133. Flag.newTime = 1;
  134. }
  135. static void setTime(void) {
  136. /*подготавливаем сообщение*/
  137. twi_buf[0] = (DS1307_ADR<<1)|0; //адресный пакет
  138. twi_buf[1] = 0; //адрес регистра
  139. twi_buf[2] = Clock.seconds; //значение секунд
  140. twi_buf[3] = Clock.minutes; //значение минут
  141. twi_buf[4] = Clock.hours; //значение часов
  142. /*отправляем его*/
  143. TWI_SendData(twi_buf, 5);
  144. }
  145. /* DS18B20 functions */
  146. static uint8_t ds18b20_Reset(void) {
  147. uint8_t i;
  148. /* Pull line low and wait for 480uS */
  149. DS18B20_LOW;
  150. DS18B20_OUTPUT_MODE;
  151. //ds18b20_delay(us(480));
  152. TCNT1 = 0;
  153. while (TCNT1 <= 500) {
  154. }
  155. /* Release line and wait for 60uS */
  156. DS18B20_INPUT_MODE;
  157. //ds18b20_delay(us(60));
  158. TCNT1 = 0;
  159. while (TCNT1 <= 70) {
  160. }
  161. /* Store line value and wait until the completion of 480uS period */
  162. i = DS18B20_VALUE;
  163. //ds18b20_delay(us(420));
  164. //OCR1B = 420;
  165. TCNT1 = 0;
  166. while (TCNT1 <= 430) {
  167. }
  168. /* Return the value read from the presence pulse (0=OK, else=WRONG) */
  169. return i;
  170. }
  171. static void ds18b20_WriteBit(uint8_t bit) {
  172. /* Pull line low for 1uS */
  173. DS18B20_LOW;
  174. DS18B20_OUTPUT_MODE;
  175. //ds18b20_delay(us(1));
  176. TCNT1 = 0;
  177. while (TCNT1 <= 1);
  178. /* If we want to write 1, release the line (if not will keep low) */
  179. if(1 == bit) {
  180. DS18B20_INPUT_MODE;
  181. }
  182. /* Wait for 60uS and release the line */
  183. //ds18b20_delay(us(60));
  184. TCNT1 = 0;
  185. while (TCNT1 <= 60) {
  186. }
  187. DS18B20_INPUT_MODE;
  188. }
  189. static uint8_t ds18b20_ReadBit(void) {
  190. uint8_t bit=0;
  191. /* Pull line low for 1uS */
  192. DS18B20_LOW;
  193. DS18B20_OUTPUT_MODE;
  194. //ds18b20_delay(us(1));
  195. TCNT1 = 0;
  196. while (TCNT1 <= 1);
  197. /* Release line and wait for 14uS */
  198. DS18B20_INPUT_MODE;
  199. //ds18b20_delay(us(14));
  200. TCNT1 = 0;
  201. while (TCNT1 <= 14) {
  202. }
  203. /* Read line value */
  204. if (DS18B20_VALUE != 0) {
  205. bit = 0x80;
  206. }
  207. /* Wait for 45uS to end and return read value */
  208. //ds18b20_delay(us(45));
  209. TCNT1 = 0;
  210. while (TCNT1 <= 45) {
  211. }
  212. return bit;
  213. }
  214. static uint8_t ds18b20_ReadByte(void) {
  215. uint8_t i=8, n=0;
  216. while (i--) {
  217. /* Shift one position right and store read value */
  218. n >>= 1;
  219. n |= ds18b20_ReadBit();
  220. }
  221. return n;
  222. }
  223. static void ds18b20_WriteByte(uint8_t byte) {
  224. uint8_t i=8;
  225. while (i--) {
  226. /* Write actual bit and shift one position right to make the next bit ready */
  227. ds18b20_WriteBit(byte & 0x01);
  228. byte >>= 1;
  229. }
  230. }
  231. static void ds18b20_StartMeasure(void) {
  232. /* Reset, skip ROM and start temperature conversion */
  233. if (ds18b20_Reset() != 0) {
  234. Temperature = -99;
  235. Flag.newTemp = 1;
  236. } else {
  237. ds18b20_WriteByte(DS18B20_CMD_SKIPROM);
  238. ds18b20_WriteByte(DS18B20_CMD_CONVERTTEMP);
  239. RTOS_SetTask(ds18b20_ReadTemperature, 800, 0);
  240. }
  241. }
  242. static void ds18b20_ReadTemperature(void) {
  243. uint8_t temperature[2];
  244. int8_t digit;
  245. /* Reset, skip ROM and send command to read Scratchpad */
  246. if (ds18b20_Reset() != 0) {
  247. Temperature = -98;
  248. } else {
  249. ds18b20_WriteByte(DS18B20_CMD_SKIPROM);
  250. ds18b20_WriteByte(DS18B20_CMD_RSCRATCHPAD);
  251. /* Read Scratchpad (only 2 first bytes) */
  252. temperature[0]=ds18b20_ReadByte();
  253. temperature[1]=ds18b20_ReadByte();
  254. //ds18b20_reset();
  255. /* Store temperature integer digits */
  256. digit=temperature[0]>>4;
  257. digit|=(temperature[1]&0x7)<<4;
  258. /* Get only integer part of temperature */
  259. Temperature = digit / 16;
  260. }
  261. Flag.newTemp = 1;
  262. }
  263. /**
  264. * I n t e r r u p t h a n d l e r s
  265. */
  266. #pragma vector=TIMER0_OVF_vect
  267. __interrupt void TIMER0_OVF_ISR(void) {
  268. static uint8_t indicator = 0;
  269. TCNT0 = TIM0_CNT; // reload timer
  270. INDCTR_COMMON_PORT &= ~INDCTR_COMMON_ALL; // off all indikators
  271. switch (indicator) {
  272. case 0:
  273. INDCTR_SEGMENT_PORT = Display[0];
  274. INDCTR_COMMON_PORT |= 0x01;
  275. indicator = 1;
  276. break;
  277. case 1:
  278. if (1 == Flag.needDot) {
  279. INDCTR_SEGMENT_PORT = Display[1] | Sym_dot;
  280. } else {
  281. INDCTR_SEGMENT_PORT = Display[1];
  282. }
  283. INDCTR_COMMON_PORT |= 0x02;
  284. indicator = 2;
  285. break;
  286. case 2:
  287. INDCTR_SEGMENT_PORT = Display[2];
  288. INDCTR_COMMON_PORT |= 0x04;
  289. indicator = 3;
  290. break;
  291. case 3:
  292. INDCTR_SEGMENT_PORT = Display[3];
  293. INDCTR_COMMON_PORT |= 0x08;
  294. default:
  295. indicator = 0;
  296. break;
  297. }
  298. }
  299. #pragma vector=TIMER1_COMPA_vect
  300. __interrupt void TIMER1_COMPA_ISR(void) {
  301. }
  302. #pragma vector=TIMER1_COMPB_vect
  303. __interrupt void TIMER1_COMPB_ISR(void) {
  304. }
  305. #pragma vector=TIMER1_OVF_vect
  306. __interrupt void TIMER1_OVF_ISR(void) {
  307. Flag.T1OC = 1;
  308. }
  309. #pragma vector=ADC_vect
  310. __interrupt void ADC_ISR(void) {
  311. resultADC = ADCH;
  312. ADCSR &= ~(1<<ADIE); // disable interrupt
  313. Flag.newBTN = 1;
  314. }