MPPT_Code.ino 27 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597
  1. //----------------------------------------------------------------------------------------------------
  2. // ARDUINO MPPT SOLAR CHARGE CONTROLLER (Version-3)
  3. // Author: Debasish Dutta/deba168
  4. // www.opengreenenergy.in
  5. //
  6. // This code is for an arduino Nano based Solar MPPT charge controller.
  7. // This code is a modified version of sample code from www.timnolan.com
  8. // updated 06/21/2015
  9. //
  10. // Mods by Aplavins 06/19/2015
  11. //// Specifications : //////////////////////////////////////////////////////////////////////////////////////////////////////
  12. //
  13. // 1.Solar panel power = 50W
  14. //
  15. // 2.Rated Battery Voltage= 12V ( lead acid type )
  16. // 3.Maximum current = 5A //
  17. // 4.Maximum load current =10A //
  18. // 5. In put Voltage = Solar panel with Open circuit voltage from 17 to 25V //
  19. ///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
  20. #include "TimerOne.h" // using Timer1 library from http://www.arduino.cc/playground/Code/Timer1
  21. #include <LiquidCrystal_I2C.h> // using the LCD I2C Library from https://bitbucket.org/fmalpartida/new-liquidcrystal/downloads
  22. #include <Wire.h>
  23. //----------------------------------------------------------------------------------------------------------
  24. //////// Arduino pins Connections//////////////////////////////////////////////////////////////////////////////////
  25. // A0 - Voltage divider (solar)
  26. // A1 - ACS 712 Out
  27. // A2 - Voltage divider (battery)
  28. // A4 - LCD SDA
  29. // A5 - LCD SCL
  30. // D2 - ESP8266 Tx
  31. // D3 - ESP8266 Rx through the voltage divider
  32. // D5 - LCD back control button
  33. // D6 - Load Control
  34. // D8 - 2104 MOSFET driver SD
  35. // D9 - 2104 MOSFET driver IN
  36. // D11- Green LED
  37. // D12- Yellow LED
  38. // D13- Red LED
  39. // Full scheatic is given at http://www.instructables.com/files/orig/F9A/LLR8/IAPASVA1/F9ALLR8IAPASVA1.pdf
  40. ///////// Definitions /////////////////////////////////////////////////////////////////////////////////////////////////
  41. #define SOL_VOLTS_CHAN 0 // defining the adc channel to read solar volts
  42. #define SOL_AMPS_CHAN 1 // Defining the adc channel to read solar amps
  43. #define BAT_VOLTS_CHAN 2 // defining the adc channel to read battery volts
  44. #define AVG_NUM 8 // number of iterations of the adc routine to average the adc readings
  45. // ACS 712 Current Sensor is used. Current Measured = (5/(1024 *0.185))*ADC - (2.5/0.185)
  46. #define SOL_AMPS_SCALE 0.026393581 // the scaling value for raw adc reading to get solar amps // 5/(1024*0.185)
  47. #define SOL_VOLTS_SCALE 0.029296875 // the scaling value for raw adc reading to get solar volts // (5/1024)*(R1+R2)/R2 // R1=100k and R2=20k
  48. #define BAT_VOLTS_SCALE 0.029296875 // the scaling value for raw adc reading to get battery volts
  49. #define PWM_PIN 9 // the output pin for the pwm (only pin 9 avaliable for timer 1 at 50kHz)
  50. #define PWM_ENABLE_PIN 8 // pin used to control shutoff function of the IR2104 MOSFET driver (hight the mosfet driver is on)
  51. #define PWM_FULL 1023 // the actual value used by the Timer1 routines for 100% pwm duty cycle
  52. #define PWM_MAX 100 // the value for pwm duty cyle 0-100%
  53. #define PWM_MIN 60 // the value for pwm duty cyle 0-100% (below this value the current running in the system is = 0)
  54. #define PWM_START 90 // the value for pwm duty cyle 0-100%
  55. #define PWM_INC 1 //the value the increment to the pwm value for the ppt algorithm
  56. #define TRUE 1
  57. #define FALSE 0
  58. #define ON TRUE
  59. #define OFF FALSE
  60. #define TURN_ON_MOSFETS digitalWrite(PWM_ENABLE_PIN, HIGH) // enable MOSFET driver
  61. #define TURN_OFF_MOSFETS digitalWrite(PWM_ENABLE_PIN, LOW) // disable MOSFET driver
  62. #define ONE_SECOND 50000 //count for number of interrupt in 1 second on interrupt period of 20us
  63. #define LOW_SOL_WATTS 5.00 //value of solar watts // this is 5.00 watts
  64. #define MIN_SOL_WATTS 1.00 //value of solar watts // this is 1.00 watts
  65. #define MIN_BAT_VOLTS 11.00 //value of battery voltage // this is 11.00 volts
  66. #define MAX_BAT_VOLTS 14.10 //value of battery voltage// this is 14.10 volts
  67. #define BATT_FLOAT 13.60 // battery voltage we want to stop charging at
  68. #define HIGH_BAT_VOLTS 13.00 //value of battery voltage // this is 13.00 volts
  69. #define LVD 11.5 //Low voltage disconnect setting for a 12V system
  70. #define OFF_NUM 9 // number of iterations of off charger state
  71. //------------------------------------------------------------------------------------------------------
  72. //Defining led pins for indication
  73. #define LED_RED 11
  74. #define LED_GREEN 12
  75. #define LED_YELLOW 13
  76. //-----------------------------------------------------------------------------------------------------
  77. // Defining load control pin
  78. #define LOAD_PIN 6 // pin-2 is used to control the load
  79. //-----------------------------------------------------------------------------------------------------
  80. // Defining lcd back light pin
  81. #define BACK_LIGHT_PIN 5 // pin-5 is used to control the lcd back light
  82. //------------------------------------------------------------------------------------------------------
  83. /////////////////////////////////////////BIT MAP ARRAY//////////////////////////////////////////////////
  84. //-------------------------------------------------------------------------------------------------------
  85. byte solar[8] = //icon for termometer
  86. {
  87. 0b11111,
  88. 0b10101,
  89. 0b11111,
  90. 0b10101,
  91. 0b11111,
  92. 0b10101,
  93. 0b11111,
  94. 0b00000
  95. };
  96. byte battery[8]=
  97. {
  98. 0b01110,
  99. 0b11011,
  100. 0b10001,
  101. 0b10001,
  102. 0b11111,
  103. 0b11111,
  104. 0b11111,
  105. 0b11111,
  106. };
  107. byte _PWM [8]=
  108. {
  109. 0b11101,
  110. 0b10101,
  111. 0b10101,
  112. 0b10101,
  113. 0b10101,
  114. 0b10101,
  115. 0b10101,
  116. 0b10111,
  117. };
  118. //-------------------------------------------------------------------------------------------------------
  119. // global variables
  120. float sol_amps; // solar amps
  121. float sol_volts; // solar volts
  122. float bat_volts; // battery volts
  123. float sol_watts; // solar watts
  124. float old_sol_watts = 0; // solar watts from previous time through ppt routine
  125. unsigned int seconds = 0; // seconds from timer routine
  126. unsigned int prev_seconds = 0; // seconds value from previous pass
  127. unsigned int interrupt_counter = 0; // counter for 20us interrrupt
  128. unsigned long time = 0; // variable to store time the back light control button was pressed in millis
  129. int delta = PWM_INC; // variable used to modify pwm duty cycle for the ppt algorithm
  130. int pwm = 0; // pwm duty cycle 0-100%
  131. int back_light_pin_State = 0; // variable for storing the state of the backlight button
  132. int load_status = 0; // variable for storing the load output state (for writing to LCD)
  133. enum charger_mode {off, on, bulk, bat_float} charger_state; // enumerated variable that holds state for charger state machine
  134. // set the LCD address to 0x27 for a 20 chars 4 line display
  135. // Set the pins on the I2C chip used for LCD connections:
  136. // addr, en,rw,rs,d4,d5,d6,d7,bl,blpol
  137. LiquidCrystal_I2C lcd(0x27, 2, 1, 0, 4, 5, 6, 7, 3, POSITIVE); // Set the LCD I2C address
  138. //------------------------------------------------------------------------------------------------------
  139. // This routine is automatically called at powerup/reset
  140. //------------------------------------------------------------------------------------------------------
  141. void setup() // run once, when the sketch starts
  142. {
  143. pinMode(PWM_ENABLE_PIN, OUTPUT); // sets the digital pin as output
  144. TURN_OFF_MOSFETS; // turn off MOSFET driver chip
  145. charger_state = off; // start with charger state as off
  146. pinMode(LED_RED, OUTPUT); // sets the digital pin as output
  147. pinMode(LED_GREEN, OUTPUT); // sets the digital pin as output
  148. pinMode(LED_YELLOW, OUTPUT); // sets the digital pin as output
  149. Timer1.initialize(20); // initialize timer1, and set a 20uS period
  150. Timer1.pwm(PWM_PIN, 0); // setup pwm on pin 9, 0% duty cycle
  151. Timer1.attachInterrupt(callback); // attaches callback() as a timer overflow interrupt
  152. Serial.begin(9600); // open the serial port at 38400 bps:
  153. pwm = PWM_START; // starting value for pwm
  154. pinMode(BACK_LIGHT_PIN, INPUT); // backlight on button
  155. pinMode(LOAD_PIN,OUTPUT); // output for the LOAD MOSFET (LOW = on, HIGH = off)
  156. digitalWrite(LOAD_PIN,HIGH); // default load state is OFF
  157. lcd.begin(20,4); // initialize the lcd for 16 chars 2 lines, turn on backlight
  158. lcd.noBacklight(); // turn off the backlight
  159. lcd.createChar(1,solar); // turn the bitmap into a character
  160. lcd.createChar(2,battery); // turn the bitmap into a character
  161. lcd.createChar(3,_PWM); // turn the bitmap into a character
  162. }
  163. //------------------------------------------------------------------------------------------------------
  164. // Main loop
  165. //------------------------------------------------------------------------------------------------------
  166. void loop()
  167. {
  168. read_data(); // read data from inputs
  169. run_charger(); // run the charger state machine
  170. print_data(); // print data
  171. load_control(); // control the connected load
  172. led_output(); // led indication
  173. lcd_display(); // lcd display
  174. }
  175. //------------------------------------------------------------------------------------------------------
  176. // This routine reads and averages the analog inputs for this system, solar volts, solar amps and
  177. // battery volts.
  178. //------------------------------------------------------------------------------------------------------
  179. int read_adc(int channel){
  180. int sum = 0;
  181. int temp;
  182. int i;
  183. for (i=0; i<AVG_NUM; i++) { // loop through reading raw adc values AVG_NUM number of times
  184. temp = analogRead(channel); // read the input pin
  185. sum += temp; // store sum for averaging
  186. delayMicroseconds(50); // pauses for 50 microseconds
  187. }
  188. return(sum / AVG_NUM); // divide sum by AVG_NUM to get average and return it
  189. }
  190. //------------------------------------------------------------------------------------------------------
  191. // This routine reads all the analog input values for the system. Then it multiplies them by the scale
  192. // factor to get actual value in volts or amps.
  193. //------------------------------------------------------------------------------------------------------
  194. void read_data(void) {
  195. sol_amps = (read_adc(SOL_AMPS_CHAN) * SOL_AMPS_SCALE -12.01); //input of solar amps
  196. sol_volts = read_adc(SOL_VOLTS_CHAN) * SOL_VOLTS_SCALE; //input of solar volts
  197. bat_volts = read_adc(BAT_VOLTS_CHAN) * BAT_VOLTS_SCALE; //input of battery volts
  198. sol_watts = sol_amps * sol_volts ; //calculations of solar watts
  199. }
  200. //------------------------------------------------------------------------------------------------------
  201. // This is interrupt service routine for Timer1 that occurs every 20uS.
  202. //
  203. //------------------------------------------------------------------------------------------------------
  204. void callback()
  205. {
  206. if (interrupt_counter++ > ONE_SECOND) { // increment interrupt_counter until one second has passed
  207. interrupt_counter = 0; // reset the counter
  208. seconds++; // then increment seconds counter
  209. }
  210. }
  211. //------------------------------------------------------------------------------------------------------
  212. // This routine uses the Timer1.pwm function to set the pwm duty cycle.
  213. //------------------------------------------------------------------------------------------------------
  214. void set_pwm_duty(void) {
  215. if (pwm > PWM_MAX) { // check limits of PWM duty cyle and set to PWM_MAX
  216. pwm = PWM_MAX;
  217. }
  218. else if (pwm < PWM_MIN) { // if pwm is less than PWM_MIN then set it to PWM_MIN
  219. pwm = PWM_MIN;
  220. }
  221. if (pwm < PWM_MAX) {
  222. Timer1.pwm(PWM_PIN,(PWM_FULL * (long)pwm / 100), 20); // use Timer1 routine to set pwm duty cycle at 20uS period
  223. //Timer1.pwm(PWM_PIN,(PWM_FULL * (long)pwm / 100));
  224. }
  225. else if (pwm == PWM_MAX) { // if pwm set to 100% it will be on full but we have
  226. Timer1.pwm(PWM_PIN,(PWM_FULL - 1), 20); // keep switching so set duty cycle at 99.9%
  227. //Timer1.pwm(PWM_PIN,(PWM_FULL - 1));
  228. }
  229. }
  230. //------------------------------------------------------------------------------------------------------
  231. // This routine is the charger state machine. It has four states on, off, bulk and float.
  232. // It's called once each time through the main loop to see what state the charger should be in.
  233. // The battery charger can be in one of the following four states:
  234. //
  235. // On State - this is charger state for MIN_SOL_WATTS < solar watts < LOW_SOL_WATTS. In this state isthe solar
  236. // watts input is too low for the bulk charging state but not low enough to go into the off state.
  237. // In this state we just set the pwm = 99.9% to get the most of low amount of power available.
  238. // Bulk State - this is charger state for solar watts > MIN_SOL_WATTS. This is where we do the bulk of the battery
  239. // charging and where we run the Peak Power Tracking alogorithm. In this state we try and run the maximum amount
  240. // of current that the solar panels are generating into the battery.
  241. // Float State - As the battery charges it's voltage rises. When it gets to the MAX_BAT_VOLTS we are done with the
  242. // bulk battery charging and enter the battery float state. In this state we try and keep the battery voltage
  243. // at MAX_BAT_VOLTS by adjusting the pwm value. If we get to pwm = 100% it means we can't keep the battery
  244. // voltage at MAX_BAT_VOLTS which probably means the battery is being drawn down by some load so we need to back
  245. // into the bulk charging mode.
  246. // Off State - This is state that the charger enters when solar watts < MIN_SOL_WATTS. The charger goes into this
  247. // state when there is no more power being generated by the solar panels. The MOSFETs are turned
  248. // off in this state so that power from the battery doesn't leak back into the solar panel.
  249. //------------------------------------------------------------------------------------------------------
  250. void run_charger(void) {
  251. static int off_count = OFF_NUM;
  252. switch (charger_state) {
  253. case on:
  254. if (sol_watts < MIN_SOL_WATTS) { // if watts input from the solar panel is less than
  255. charger_state = off; // the minimum solar watts then
  256. off_count = OFF_NUM; // go to the charger off state
  257. TURN_OFF_MOSFETS;
  258. }
  259. else if (bat_volts > (BATT_FLOAT - 0.1)) { // else if the battery voltage has gotten above the float
  260. charger_state = bat_float; // battery float voltage go to the charger battery float state
  261. }
  262. else if (sol_watts < LOW_SOL_WATTS) { // else if the solar input watts is less than low solar watts
  263. pwm = PWM_MAX; // it means there is not much power being generated by the solar panel
  264. set_pwm_duty(); // so we just set the pwm = 100% so we can get as much of this power as possible
  265. } // and stay in the charger on state
  266. else {
  267. pwm = ((bat_volts * 10) / (sol_volts / 10)) + 5; // else if we are making more power than low solar watts figure out what the pwm
  268. charger_state = bulk; // value should be and change the charger to bulk state
  269. }
  270. break;
  271. case bulk:
  272. if (sol_watts < MIN_SOL_WATTS) { // if watts input from the solar panel is less than
  273. charger_state = off; // the minimum solar watts then it is getting dark so
  274. off_count = OFF_NUM; // go to the charger off state
  275. TURN_OFF_MOSFETS;
  276. }
  277. else if (bat_volts > BATT_FLOAT) { // else if the battery voltage has gotten above the float
  278. charger_state = bat_float; // battery float voltage go to the charger battery float state
  279. }
  280. else if (sol_watts < LOW_SOL_WATTS) { // else if the solar input watts is less than low solar watts
  281. charger_state = on; // it means there is not much power being generated by the solar panel
  282. TURN_ON_MOSFETS; // so go to charger on state
  283. }
  284. else { // this is where we do the Peak Power Tracking ro Maximum Power Point algorithm
  285. if (old_sol_watts >= sol_watts) { // if previous watts are greater change the value of
  286. delta = -delta; // delta to make pwm increase or decrease to maximize watts
  287. }
  288. pwm += delta; // add delta to change PWM duty cycle for PPT algorythm (compound addition)
  289. old_sol_watts = sol_watts; // load old_watts with current watts value for next time
  290. set_pwm_duty(); // set pwm duty cycle to pwm value
  291. }
  292. break;
  293. case bat_float:
  294. if (sol_watts < MIN_SOL_WATTS) { // if watts input from the solar panel is less than
  295. charger_state = off; // the minimum solar watts then it is getting dark so
  296. off_count = OFF_NUM; // go to the charger off state
  297. TURN_OFF_MOSFETS;
  298. set_pwm_duty();
  299. }
  300. else if (bat_volts > BATT_FLOAT) { // If we've charged the battery abovethe float voltage
  301. TURN_OFF_MOSFETS; // turn off MOSFETs instead of modiflying duty cycle
  302. pwm = PWM_MAX; // the charger is less efficient at 99% duty cycle
  303. set_pwm_duty(); // write the PWM
  304. }
  305. else if (bat_volts < BATT_FLOAT) { // else if the battery voltage is less than the float voltage - 0.1
  306. pwm = PWM_MAX;
  307. set_pwm_duty(); // start charging again
  308. TURN_ON_MOSFETS;
  309. if (bat_volts < (BATT_FLOAT - 0.1)) { // if the voltage drops because of added load,
  310. charger_state = bulk; // switch back into bulk state to keep the voltage up
  311. }
  312. }
  313. break;
  314. case off: // when we jump into the charger off state, off_count is set with OFF_NUM
  315. TURN_OFF_MOSFETS;
  316. if (off_count > 0) { // this means that we run through the off state OFF_NUM of times with out doing
  317. off_count--; // anything, this is to allow the battery voltage to settle down to see if the
  318. } // battery has been disconnected
  319. else if ((bat_volts > BATT_FLOAT) && (sol_volts > bat_volts)) {
  320. TURN_ON_MOSFETS;
  321. charger_state = bat_float; // if battery voltage is still high and solar volts are high
  322. }
  323. else if ((bat_volts > MIN_BAT_VOLTS) && (bat_volts < BATT_FLOAT) && (sol_volts > bat_volts)) {
  324. TURN_ON_MOSFETS;
  325. charger_state = bulk;
  326. }
  327. break;
  328. default:
  329. TURN_OFF_MOSFETS;
  330. break;
  331. }
  332. }
  333. //----------------------------------------------------------------------------------------------------------------------
  334. /////////////////////////////////////////////LOAD CONTROL/////////////////////////////////////////////////////
  335. //----------------------------------------------------------------------------------------------------------------------
  336. void load_control(){
  337. if ((sol_watts < MIN_SOL_WATTS) && (bat_volts > LVD)){ // If the panel isn't producing, it's probably night
  338. digitalWrite(LOAD_PIN, LOW); // turn the load on
  339. load_status = 1; // record that the load is on
  340. }
  341. else{ // If the panel is producing, it's day time
  342. digitalWrite(LOAD_PIN, HIGH); // turn the load off
  343. load_status = 0; // record that the load is off
  344. }
  345. }
  346. //------------------------------------------------------------------------------------------------------
  347. // This routine prints all the data out to the serial port.
  348. //------------------------------------------------------------------------------------------------------
  349. void print_data(void) {
  350. Serial.print(seconds,DEC);
  351. Serial.print(" ");
  352. Serial.print("Charging = ");
  353. if (charger_state == on) Serial.print("on ");
  354. else if (charger_state == off) Serial.print("off ");
  355. else if (charger_state == bulk) Serial.print("bulk ");
  356. else if (charger_state == bat_float) Serial.print("float");
  357. Serial.print(" ");
  358. Serial.print("pwm = ");
  359. Serial.print(pwm,DEC);
  360. Serial.print(" ");
  361. Serial.print("Current (panel) = ");
  362. Serial.print(sol_amps);
  363. Serial.print(" ");
  364. Serial.print("Voltage (panel) = ");
  365. Serial.print(sol_volts);
  366. Serial.print(" ");
  367. Serial.print("Power (panel) = ");
  368. Serial.print(sol_volts);
  369. Serial.print(" ");
  370. Serial.print("Battery Voltage = ");
  371. Serial.print(bat_volts);
  372. Serial.print(" ");
  373. Serial.print("\n\r");
  374. //delay(1000);
  375. }
  376. //-------------------------------------------------------------------------------------------------
  377. //---------------------------------Led Indication--------------------------------------------------
  378. //-------------------------------------------------------------------------------------------------
  379. void led_output(void)
  380. {
  381. if(bat_volts > 14.1 )
  382. {
  383. leds_off_all();
  384. digitalWrite(LED_YELLOW, HIGH);
  385. }
  386. else if(bat_volts > 11.9 && bat_volts < 14.1)
  387. {
  388. leds_off_all();
  389. digitalWrite(LED_GREEN, HIGH);
  390. }
  391. else if(bat_volts < 11.8)
  392. {
  393. leds_off_all;
  394. digitalWrite(LED_RED, HIGH);
  395. }
  396. }
  397. //------------------------------------------------------------------------------------------------------
  398. //
  399. // This function is used to turn all the leds off
  400. //
  401. //------------------------------------------------------------------------------------------------------
  402. void leds_off_all(void)
  403. {
  404. digitalWrite(LED_GREEN, LOW);
  405. digitalWrite(LED_RED, LOW);
  406. digitalWrite(LED_YELLOW, LOW);
  407. }
  408. //------------------------------------------------------------------------------------------------------
  409. //-------------------------- LCD DISPLAY --------------------------------------------------------------
  410. //-------------------------------------------------------------------------------------------------------
  411. void lcd_display()
  412. {
  413. back_light_pin_State = digitalRead(BACK_LIGHT_PIN);
  414. if (back_light_pin_State == HIGH)
  415. {
  416. time = millis(); // If any of the buttons are pressed, save the time in millis to "time"
  417. }
  418. lcd.setCursor(0, 0);
  419. lcd.print("SOL");
  420. lcd.setCursor(4, 0);
  421. lcd.write(1);
  422. lcd.setCursor(0, 1);
  423. lcd.print(sol_volts);
  424. lcd.print("V");
  425. lcd.setCursor(0, 2);
  426. lcd.print(sol_amps);
  427. lcd.print("A");
  428. lcd.setCursor(0, 3);
  429. lcd.print(sol_watts);
  430. lcd.print("W ");
  431. lcd.setCursor(8, 0);
  432. lcd.print("BAT");
  433. lcd.setCursor(12, 0);
  434. lcd.write(2);
  435. lcd.setCursor(8, 1);
  436. lcd.print(bat_volts);
  437. lcd.setCursor(8,2);
  438. if (charger_state == on)
  439. {
  440. lcd.print(" ");
  441. lcd.setCursor(8,2);
  442. lcd.print("on");
  443. }
  444. else if (charger_state == off)
  445. {
  446. lcd.print(" ");
  447. lcd.setCursor(8,2);
  448. lcd.print("off");
  449. }
  450. else if (charger_state == bulk)
  451. {
  452. lcd.print(" ");
  453. lcd.setCursor(8,2);
  454. lcd.print("bulk");
  455. }
  456. else if (charger_state == bat_float)
  457. {
  458. lcd.print(" ");
  459. lcd.setCursor(8,2);
  460. lcd.print("float");
  461. }
  462. //-----------------------------------------------------------
  463. //--------------------Battery State Of Charge ---------------
  464. //-----------------------------------------------------------
  465. lcd.setCursor(8,3);
  466. if ( bat_volts >= 12.7)
  467. lcd.print( "100%");
  468. else if (bat_volts >= 12.5 && bat_volts < 12.7)
  469. lcd.print( "90%");
  470. else if (bat_volts >= 12.42 && bat_volts < 12.5)
  471. lcd.print( "80%");
  472. else if (bat_volts >= 12.32 && bat_volts < 12.42)
  473. lcd.print( "70%");
  474. else if (bat_volts >= 12.2 && bat_volts < 12.32)
  475. lcd.print( "60%");
  476. else if (bat_volts >= 12.06 && bat_volts < 12.2)
  477. lcd.print( "50%");
  478. else if (bat_volts >= 11.90 && bat_volts < 12.06)
  479. lcd.print( "40%");
  480. else if (bat_volts >= 11.75 && bat_volts < 11.90)
  481. lcd.print( "30%");
  482. else if (bat_volts >= 11.58 && bat_volts < 11.75)
  483. lcd.print( "20%");
  484. else if (bat_volts >= 11.31 && bat_volts < 11.58)
  485. lcd.print( "10%");
  486. else if (bat_volts < 11.3)
  487. lcd.print( "0%");
  488. //---------------------------------------------------------------------
  489. //------------------Duty Cycle-----------------------------------------
  490. //---------------------------------------------------------------------
  491. lcd.setCursor(15,0);
  492. lcd.print("PWM");
  493. lcd.setCursor(19,0);
  494. lcd.write(3);
  495. lcd.setCursor(15,1);
  496. lcd.print(" ");
  497. lcd.setCursor(15,1);
  498. lcd.print(pwm);
  499. lcd.print("%");
  500. //----------------------------------------------------------------------
  501. //------------------------Load Status-----------------------------------
  502. //----------------------------------------------------------------------
  503. lcd.setCursor(15,2);
  504. lcd.print("Load");
  505. lcd.setCursor(15,3);
  506. if (load_status == 1)
  507. {
  508. lcd.print(" ");
  509. lcd.setCursor(15,3);
  510. lcd.print("On");
  511. }
  512. else
  513. {
  514. lcd.print(" ");
  515. lcd.setCursor(15,3);
  516. lcd.print("Off");
  517. }
  518. backLight_timer(); // call the backlight timer function in every loop
  519. }
  520. void backLight_timer(){
  521. if((millis() - time) <= 15000) // if it's been less than the 15 secs, turn the backlight on
  522. lcd.backlight(); // finish with backlight on
  523. else
  524. lcd.noBacklight(); // if it's been more than 15 secs, turn the backlight off
  525. }