main.c 27 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017
  1. /* USER CODE BEGIN Header */
  2. /**
  3. ******************************************************************************
  4. * @file : main.c
  5. * @brief : Main program body
  6. ******************************************************************************
  7. * @attention
  8. *
  9. * <h2><center>&copy; Copyright (c) 2021 STMicroelectronics.
  10. * All rights reserved.</center></h2>
  11. *
  12. * This software component is licensed by ST under BSD 3-Clause license,
  13. * the "License"; You may not use this file except in compliance with the
  14. * License. You may obtain a copy of the License at:
  15. * opensource.org/licenses/BSD-3-Clause
  16. *
  17. ******************************************************************************
  18. */
  19. /* USER CODE END Header */
  20. /* Includes ------------------------------------------------------------------*/
  21. #include "main.h"
  22. /* Private includes ----------------------------------------------------------*/
  23. /* USER CODE BEGIN Includes */
  24. /* USER CODE END Includes */
  25. /* Private typedef -----------------------------------------------------------*/
  26. /* USER CODE BEGIN PTD */
  27. typedef enum {
  28. Tube_A = 3,
  29. Tube_B = 2,
  30. Tube_D = 1,
  31. Tube_E = 0
  32. } tube_pos_t;
  33. /* USER CODE END PTD */
  34. /* Private define ------------------------------------------------------------*/
  35. /* USER CODE BEGIN PD */
  36. #define SPI_BUFFER_SIZE 5
  37. /* Display timeout, sec */
  38. #define DISP_WDT_TIME 10
  39. /* USER CODE END PD */
  40. /* Private macro -------------------------------------------------------------*/
  41. /* USER CODE BEGIN PM */
  42. /* USER CODE END PM */
  43. /* Private variables ---------------------------------------------------------*/
  44. /* USER CODE BEGIN PV */
  45. volatile flag_t Flag = {0};
  46. //static LL_RCC_ClocksTypeDef rcc_clocks;
  47. /**
  48. * Nixi Tube cathodes map in Byte Array:
  49. * {E0 E9 E8 E7 E6 E5 E4 E3}
  50. * {E2 E1 D0 D9 D8 D7 D6 D5}
  51. * {D4 D3 D2 D1 B0 B9 B8 B7}
  52. * {B6 B5 B4 B3 B2 B1 A0 A9}
  53. * {A8 A7 A6 A5 A4 A3 A2 A1}
  54. *
  55. * Shift register bit map in Tube cathodes (from 0 to 1):
  56. * {5.7 5.6 5.5 5.4 5.3 5.2 5.1 5.0 4.7 4.6} VL5/E
  57. * {4.5 4.4 4.3 4.2 4.1 4.0 3.7 3.6 3.5 3.4} VL4/D
  58. * {3.3 3.2 3.1 3.0 2.7 2.6 2.5 2.4 2.3 2.2} VL2/B
  59. * {2.1 2.0 1.7 1.6 1.5 1.4 1.3 1.2 1.1 1.0} VL1/A
  60. */
  61. static const uint16_t nixieCathodeMap[4][10] = {
  62. {0x8000, 0x0040, 0x0080, 0x0100, 0x0200, 0x0400, 0x0800, 0x1000, 0x2000, 0x4000},
  63. {0x2000, 0x0010, 0x0020, 0x0040, 0x0080, 0x0100, 0x0200, 0x0400, 0x0800, 0x1000},
  64. {0x0800, 0x0004, 0x0008, 0x0010, 0x0020, 0x0040, 0x0080, 0x0100, 0x0200, 0x0400},
  65. {0x0200, 0x0001, 0x0002, 0x0004, 0x0008, 0x0010, 0x0020, 0x0040, 0x0080, 0x0100}
  66. };
  67. //static const uint8_t nixieCathodeMask[4][2] = {{0x00, 0x3f}, {0xc0, 0x0f}, {0xf0, 0x03}, {0xc0, 0x00}};
  68. static uint8_t tubesBuffer[SPI_BUFFER_SIZE] = {0};
  69. static rtc_t Clock;
  70. static struct bme280_dev SensorDev;
  71. static struct bme280_data SensorData;
  72. static int8_t Humidity, Temperature;
  73. static nt16_t Pressure;
  74. static btn_t Button[BTN_NUM] = {
  75. {0, evBTN1Pressed, evBTN1Holded, BTN1_PIN},
  76. {0, evBTN2Pressed, evBTN2Pressed, BTN2_PIN},
  77. {0, evBTN3Pressed, evBTN3Pressed, BTN3_PIN},
  78. {0, evBTN4Pressed, evBTN4Holded, BTN4_PIN}
  79. };
  80. static volatile uint8_t dispWDT = 0;
  81. /* USER CODE END PV */
  82. /* Private function prototypes -----------------------------------------------*/
  83. static void MX_GPIO_Init(void);
  84. static void MX_DMA_Init(void);
  85. static void MX_I2C1_Init(void);
  86. static void MX_SPI1_Init(void);
  87. static void MX_USART1_UART_Init(void);
  88. /* USER CODE BEGIN PFP */
  89. static void showDigits(uint8_t * dig);
  90. static void sensor_Init(void);
  91. static void sensorStartMeasure(void);
  92. static void sensorGetData(void);
  93. static void btnProcess(void);
  94. static void Color_RGB(uint8_t r, uint8_t g, uint8_t b);
  95. /* USER CODE END PFP */
  96. /* Private user code ---------------------------------------------------------*/
  97. /* USER CODE BEGIN 0 */
  98. /* USER CODE END 0 */
  99. /**
  100. * @brief The application entry point.
  101. * @retval int
  102. */
  103. int main(void)
  104. {
  105. /* USER CODE BEGIN 1 */
  106. /* USER CODE END 1 */
  107. /* MCU Configuration--------------------------------------------------------*/
  108. /* System interrupt init*/
  109. /* USER CODE BEGIN Init */
  110. Board_Init();
  111. /* USER CODE END Init */
  112. /* Initialize all configured peripherals */
  113. MX_GPIO_Init();
  114. MX_DMA_Init();
  115. MX_I2C1_Init();
  116. MX_SPI1_Init();
  117. MX_USART1_UART_Init();
  118. /* USER CODE BEGIN 2 */
  119. RTOS_Init();
  120. /* Initialize Event State Machine */
  121. ES_Init(stShowTime);
  122. /* Enable tube power */
  123. TUBE_PWR_ON;
  124. RTC_Init();
  125. sensor_Init();
  126. /** Star SPI transfer to shift registers */
  127. /* Set DMA source and destination addresses. */
  128. /* Source: Address of the SPI buffer. */
  129. DMA1_Channel1->CMAR = (uint32_t)&tubesBuffer;
  130. /* Destination: SPI1 data register. */
  131. DMA1_Channel1->CPAR = (uint32_t)&(SPI1->DR);
  132. /* Set DMA data transfer length (SPI buffer length). */
  133. DMA1_Channel1->CNDTR = SPI_BUFFER_SIZE;
  134. /* Enable SPI+DMA transfer */
  135. SPI1->CR2 |= SPI_CR2_TXDMAEN;
  136. SPI1->CR1 |= SPI_CR1_SPE;
  137. Flag.SPI_TX_End = 1;
  138. /** Set tasks for Sheduler */
  139. RTOS_SetTask(btnProcess, 1, BTN_SCAN_PERIOD);
  140. /* USER CODE END 2 */
  141. /* USER CODE BEGIN WHILE */
  142. RTC_ReadAll(&Clock);
  143. es_event_t event = eventNull;
  144. Color_RGB(0xFF, 0x12, 0x0); // Nixie color. FF1200 or FF7E00 or FFBF00
  145. showTime();
  146. /* Infinite loop */
  147. while (1)
  148. {
  149. /* new second interrupt from RTC */
  150. if (Flag.RTC_IRQ != 0) {
  151. Flag.RTC_IRQ = 0;
  152. Blink_Start(); // !!! TODO
  153. RTC_ReadAll(&Clock);
  154. if (dispWDT != 0) {
  155. dispWDT --;
  156. if (dispWDT == 0) {
  157. ES_PlaceEvent(evDisplayWDT);
  158. }
  159. }
  160. } /* end of New second */
  161. /* USER CODE END WHILE */
  162. /* USER CODE BEGIN 3 */
  163. event = ES_GetEvent();
  164. if (event) {
  165. ES_Dispatch(event);
  166. }
  167. RTOS_DispatchTask();
  168. __WFI();
  169. }
  170. /* USER CODE END 3 */
  171. } /* End of mine() */
  172. /**
  173. * Sensor
  174. */
  175. static void sensor_Init(void) {
  176. int8_t rsltSensor;
  177. Flag.BME280 = 0;
  178. SensorDev.dev_id = (BME280_I2C_ADDR_PRIM << 1);
  179. SensorDev.intf = BME280_I2C_INTF;
  180. SensorDev.read = user_i2c_read;
  181. SensorDev.write = user_i2c_write;
  182. SensorDev.delay_ms = tdelay_ms;
  183. rsltSensor = bme280_init(&SensorDev);
  184. if (rsltSensor == BME280_OK) {
  185. Flag.BME280 = 1;
  186. /* BME280 Recommended mode of operation: Indoor navigation */
  187. SensorDev.settings.osr_h = BME280_OVERSAMPLING_1X;
  188. SensorDev.settings.osr_p = BME280_OVERSAMPLING_16X;
  189. SensorDev.settings.osr_t = BME280_OVERSAMPLING_2X;
  190. SensorDev.settings.filter = BME280_FILTER_COEFF_16;
  191. rsltSensor = bme280_set_sensor_settings((BME280_OSR_PRESS_SEL | BME280_OSR_TEMP_SEL | BME280_OSR_HUM_SEL | BME280_FILTER_SEL), &SensorDev);
  192. RTOS_SetTask(sensorStartMeasure, 103, 1000);
  193. RTOS_SetTask(sensorGetData, 603, 1000);
  194. }
  195. }
  196. static void sensorStartMeasure(void) {
  197. bme280_set_sensor_mode(BME280_FORCED_MODE, &SensorDev);
  198. }
  199. static void sensorGetData(void) {
  200. bme280_get_sensor_data(BME280_ALL, &SensorData, &SensorDev);
  201. int32_t tmp;
  202. tmp = SensorData.humidity + 512;
  203. Humidity = (int8_t)(tmp / 1024);
  204. tmp = SensorData.temperature + 50;
  205. Temperature = (int8_t)(tmp / 100);
  206. /* in 32-bit arithmetics pressure in Pa */
  207. tmp = SensorData.pressure * 1000;
  208. tmp += 66661;
  209. tmp /= 133322;
  210. /* pressure in mmHg */
  211. Pressure.s16.u8H = (uint8_t)(tmp / 100);
  212. Pressure.s16.u8L = (uint8_t)(tmp % 100);
  213. }
  214. /**
  215. * @brief I2C1 Initialization Function
  216. * @param None
  217. * @retval None
  218. */
  219. static void MX_I2C1_Init(void)
  220. {
  221. /* USER CODE BEGIN I2C1_Init 0 */
  222. /* USER CODE END I2C1_Init 0 */
  223. LL_I2C_InitTypeDef I2C_InitStruct = {0};
  224. LL_GPIO_InitTypeDef GPIO_InitStruct = {0};
  225. LL_IOP_GRP1_EnableClock(LL_IOP_GRP1_PERIPH_GPIOB);
  226. /**I2C1 GPIO Configuration
  227. PB8 ------> I2C1_SCL
  228. PB9 ------> I2C1_SDA
  229. */
  230. GPIO_InitStruct.Pin = LL_GPIO_PIN_8;
  231. GPIO_InitStruct.Mode = LL_GPIO_MODE_ALTERNATE;
  232. GPIO_InitStruct.Speed = LL_GPIO_SPEED_FREQ_HIGH;
  233. GPIO_InitStruct.OutputType = LL_GPIO_OUTPUT_OPENDRAIN;
  234. GPIO_InitStruct.Pull = LL_GPIO_PULL_UP;
  235. GPIO_InitStruct.Alternate = LL_GPIO_AF_6;
  236. LL_GPIO_Init(GPIOB, &GPIO_InitStruct);
  237. GPIO_InitStruct.Pin = LL_GPIO_PIN_9;
  238. GPIO_InitStruct.Mode = LL_GPIO_MODE_ALTERNATE;
  239. GPIO_InitStruct.Speed = LL_GPIO_SPEED_FREQ_HIGH;
  240. GPIO_InitStruct.OutputType = LL_GPIO_OUTPUT_OPENDRAIN;
  241. GPIO_InitStruct.Pull = LL_GPIO_PULL_UP;
  242. GPIO_InitStruct.Alternate = LL_GPIO_AF_6;
  243. LL_GPIO_Init(GPIOB, &GPIO_InitStruct);
  244. /* Peripheral clock enable */
  245. LL_APB1_GRP1_EnableClock(LL_APB1_GRP1_PERIPH_I2C1);
  246. /* I2C1 DMA Init */
  247. /* I2C1_RX Init */
  248. LL_DMA_SetPeriphRequest(DMA1, LL_DMA_CHANNEL_2, LL_DMAMUX_REQ_I2C1_RX);
  249. LL_DMA_SetDataTransferDirection(DMA1, LL_DMA_CHANNEL_2, LL_DMA_DIRECTION_PERIPH_TO_MEMORY);
  250. LL_DMA_SetChannelPriorityLevel(DMA1, LL_DMA_CHANNEL_2, LL_DMA_PRIORITY_MEDIUM);
  251. LL_DMA_SetPeriphIncMode(DMA1, LL_DMA_CHANNEL_2, LL_DMA_PERIPH_NOINCREMENT);
  252. LL_DMA_SetMemoryIncMode(DMA1, LL_DMA_CHANNEL_2, LL_DMA_MEMORY_INCREMENT);
  253. LL_DMA_SetPeriphSize(DMA1, LL_DMA_CHANNEL_2, LL_DMA_PDATAALIGN_BYTE);
  254. LL_DMA_SetMemorySize(DMA1, LL_DMA_CHANNEL_2, LL_DMA_MDATAALIGN_BYTE);
  255. /* I2C1_TX Init */
  256. LL_DMA_SetPeriphRequest(DMA1, LL_DMA_CHANNEL_3, LL_DMAMUX_REQ_I2C1_TX);
  257. LL_DMA_SetDataTransferDirection(DMA1, LL_DMA_CHANNEL_3, LL_DMA_DIRECTION_MEMORY_TO_PERIPH);
  258. LL_DMA_SetChannelPriorityLevel(DMA1, LL_DMA_CHANNEL_3, LL_DMA_PRIORITY_MEDIUM);
  259. LL_DMA_SetPeriphIncMode(DMA1, LL_DMA_CHANNEL_3, LL_DMA_PERIPH_NOINCREMENT);
  260. LL_DMA_SetMemoryIncMode(DMA1, LL_DMA_CHANNEL_3, LL_DMA_MEMORY_INCREMENT);
  261. LL_DMA_SetPeriphSize(DMA1, LL_DMA_CHANNEL_3, LL_DMA_PDATAALIGN_BYTE);
  262. LL_DMA_SetMemorySize(DMA1, LL_DMA_CHANNEL_3, LL_DMA_MDATAALIGN_BYTE);
  263. /* I2C1 interrupt Init */
  264. /* USER CODE BEGIN I2C1_Init 1 */
  265. /* Enable DMA transfer complete/error interrupts */
  266. LL_DMA_EnableIT_TC(DMA1, LL_DMA_CHANNEL_2);
  267. LL_DMA_EnableIT_TE(DMA1, LL_DMA_CHANNEL_2);
  268. LL_DMA_EnableIT_TC(DMA1, LL_DMA_CHANNEL_3);
  269. LL_DMA_EnableIT_TE(DMA1, LL_DMA_CHANNEL_3);
  270. /* USER CODE END I2C1_Init 1 */
  271. /** I2C Initialization
  272. */
  273. I2C_InitStruct.PeripheralMode = LL_I2C_MODE_I2C;
  274. I2C_InitStruct.Timing = 0x0010061A;
  275. I2C_InitStruct.AnalogFilter = LL_I2C_ANALOGFILTER_ENABLE;
  276. I2C_InitStruct.DigitalFilter = 0;
  277. I2C_InitStruct.OwnAddress1 = 0;
  278. I2C_InitStruct.TypeAcknowledge = LL_I2C_ACK;
  279. I2C_InitStruct.OwnAddrSize = LL_I2C_OWNADDRESS1_7BIT;
  280. LL_I2C_EnableAutoEndMode(I2C1);
  281. LL_I2C_SetOwnAddress2(I2C1, 0, LL_I2C_OWNADDRESS2_NOMASK);
  282. LL_I2C_DisableOwnAddress2(I2C1);
  283. LL_I2C_DisableGeneralCall(I2C1);
  284. LL_I2C_DisableClockStretching(I2C1);
  285. LL_I2C_Init(I2C1, &I2C_InitStruct);
  286. /* USER CODE BEGIN I2C1_Init 2 */
  287. /* USER CODE END I2C1_Init 2 */
  288. }
  289. /**
  290. * @brief SPI1 Initialization Function
  291. * @param None
  292. * @retval None
  293. */
  294. static void MX_SPI1_Init(void)
  295. {
  296. /* USER CODE BEGIN SPI1_Init 0 */
  297. /* USER CODE END SPI1_Init 0 */
  298. LL_SPI_InitTypeDef SPI_InitStruct = {0};
  299. LL_GPIO_InitTypeDef GPIO_InitStruct = {0};
  300. /* Peripheral clock enable */
  301. LL_APB2_GRP1_EnableClock(LL_APB2_GRP1_PERIPH_SPI1);
  302. LL_IOP_GRP1_EnableClock(LL_IOP_GRP1_PERIPH_GPIOB);
  303. /**SPI1 GPIO Configuration
  304. PB3 ------> SPI1_SCK
  305. PB5 ------> SPI1_MOSI
  306. */
  307. GPIO_InitStruct.Pin = LL_GPIO_PIN_3;
  308. GPIO_InitStruct.Mode = LL_GPIO_MODE_ALTERNATE;
  309. GPIO_InitStruct.Speed = LL_GPIO_SPEED_FREQ_HIGH;
  310. GPIO_InitStruct.OutputType = LL_GPIO_OUTPUT_OPENDRAIN;
  311. GPIO_InitStruct.Pull = LL_GPIO_PULL_NO;
  312. GPIO_InitStruct.Alternate = LL_GPIO_AF_0;
  313. LL_GPIO_Init(GPIOB, &GPIO_InitStruct);
  314. GPIO_InitStruct.Pin = LL_GPIO_PIN_5;
  315. GPIO_InitStruct.Mode = LL_GPIO_MODE_ALTERNATE;
  316. GPIO_InitStruct.Speed = LL_GPIO_SPEED_FREQ_HIGH;
  317. GPIO_InitStruct.OutputType = LL_GPIO_OUTPUT_OPENDRAIN;
  318. GPIO_InitStruct.Pull = LL_GPIO_PULL_NO;
  319. GPIO_InitStruct.Alternate = LL_GPIO_AF_0;
  320. LL_GPIO_Init(GPIOB, &GPIO_InitStruct);
  321. /* SPI1 DMA Init */
  322. /* SPI1_TX Init */
  323. LL_DMA_SetPeriphRequest(DMA1, LL_DMA_CHANNEL_1, LL_DMAMUX_REQ_SPI1_TX);
  324. LL_DMA_SetDataTransferDirection(DMA1, LL_DMA_CHANNEL_1, LL_DMA_DIRECTION_MEMORY_TO_PERIPH);
  325. LL_DMA_SetChannelPriorityLevel(DMA1, LL_DMA_CHANNEL_1, LL_DMA_PRIORITY_HIGH);
  326. LL_DMA_SetMode(DMA1, LL_DMA_CHANNEL_1, LL_DMA_MODE_CIRCULAR);
  327. LL_DMA_SetPeriphIncMode(DMA1, LL_DMA_CHANNEL_1, LL_DMA_PERIPH_NOINCREMENT);
  328. LL_DMA_SetMemoryIncMode(DMA1, LL_DMA_CHANNEL_1, LL_DMA_MEMORY_INCREMENT);
  329. LL_DMA_SetPeriphSize(DMA1, LL_DMA_CHANNEL_1, LL_DMA_PDATAALIGN_BYTE);
  330. LL_DMA_SetMemorySize(DMA1, LL_DMA_CHANNEL_1, LL_DMA_MDATAALIGN_BYTE);
  331. /* SPI1 interrupt Init */
  332. NVIC_SetPriority(SPI1_IRQn, 0);
  333. NVIC_EnableIRQ(SPI1_IRQn);
  334. /* USER CODE BEGIN SPI1_Init 1 */
  335. /* Enable DMA transfer complete/error interrupts */
  336. LL_DMA_EnableIT_TC(DMA1, LL_DMA_CHANNEL_1);
  337. LL_DMA_EnableIT_TE(DMA1, LL_DMA_CHANNEL_1);
  338. /* USER CODE END SPI1_Init 1 */
  339. /* SPI1 parameter configuration*/
  340. SPI_InitStruct.TransferDirection = LL_SPI_FULL_DUPLEX;
  341. SPI_InitStruct.Mode = LL_SPI_MODE_MASTER;
  342. SPI_InitStruct.DataWidth = LL_SPI_DATAWIDTH_8BIT;
  343. SPI_InitStruct.ClockPolarity = LL_SPI_POLARITY_LOW;
  344. SPI_InitStruct.ClockPhase = LL_SPI_PHASE_1EDGE;
  345. SPI_InitStruct.NSS = LL_SPI_NSS_SOFT;
  346. SPI_InitStruct.BaudRate = LL_SPI_BAUDRATEPRESCALER_DIV16;
  347. SPI_InitStruct.BitOrder = LL_SPI_MSB_FIRST;
  348. SPI_InitStruct.CRCCalculation = LL_SPI_CRCCALCULATION_DISABLE;
  349. SPI_InitStruct.CRCPoly = 7;
  350. LL_SPI_Init(SPI1, &SPI_InitStruct);
  351. LL_SPI_SetStandard(SPI1, LL_SPI_PROTOCOL_MOTOROLA);
  352. LL_SPI_DisableNSSPulseMgt(SPI1);
  353. /* USER CODE BEGIN SPI1_Init 2 */
  354. /* USER CODE END SPI1_Init 2 */
  355. }
  356. /**
  357. * @brief USART1 Initialization Function
  358. * @param None
  359. * @retval None
  360. */
  361. static void MX_USART1_UART_Init(void)
  362. {
  363. /* USER CODE BEGIN USART1_Init 0 */
  364. /* USER CODE END USART1_Init 0 */
  365. LL_USART_InitTypeDef USART_InitStruct = {0};
  366. LL_GPIO_InitTypeDef GPIO_InitStruct = {0};
  367. /* Peripheral clock enable */
  368. LL_APB2_GRP1_EnableClock(LL_APB2_GRP1_PERIPH_USART1);
  369. LL_IOP_GRP1_EnableClock(LL_IOP_GRP1_PERIPH_GPIOB);
  370. /**USART1 GPIO Configuration
  371. PB6 ------> USART1_TX
  372. PB7 ------> USART1_RX
  373. */
  374. GPIO_InitStruct.Pin = LL_GPIO_PIN_6;
  375. GPIO_InitStruct.Mode = LL_GPIO_MODE_ALTERNATE;
  376. GPIO_InitStruct.Speed = LL_GPIO_SPEED_FREQ_HIGH;
  377. GPIO_InitStruct.OutputType = LL_GPIO_OUTPUT_PUSHPULL;
  378. GPIO_InitStruct.Pull = LL_GPIO_PULL_NO;
  379. GPIO_InitStruct.Alternate = LL_GPIO_AF_0;
  380. LL_GPIO_Init(GPIOB, &GPIO_InitStruct);
  381. GPIO_InitStruct.Pin = LL_GPIO_PIN_7;
  382. GPIO_InitStruct.Mode = LL_GPIO_MODE_ALTERNATE;
  383. GPIO_InitStruct.Speed = LL_GPIO_SPEED_FREQ_HIGH;
  384. GPIO_InitStruct.OutputType = LL_GPIO_OUTPUT_PUSHPULL;
  385. GPIO_InitStruct.Pull = LL_GPIO_PULL_NO;
  386. GPIO_InitStruct.Alternate = LL_GPIO_AF_0;
  387. LL_GPIO_Init(GPIOB, &GPIO_InitStruct);
  388. /* USART1 interrupt Init */
  389. NVIC_SetPriority(USART1_IRQn, 0);
  390. NVIC_EnableIRQ(USART1_IRQn);
  391. /* USER CODE BEGIN USART1_Init 1 */
  392. /* USER CODE END USART1_Init 1 */
  393. USART_InitStruct.PrescalerValue = LL_USART_PRESCALER_DIV1;
  394. USART_InitStruct.BaudRate = 115200;
  395. USART_InitStruct.DataWidth = LL_USART_DATAWIDTH_8B;
  396. USART_InitStruct.StopBits = LL_USART_STOPBITS_1;
  397. USART_InitStruct.Parity = LL_USART_PARITY_NONE;
  398. USART_InitStruct.TransferDirection = LL_USART_DIRECTION_TX_RX;
  399. USART_InitStruct.HardwareFlowControl = LL_USART_HWCONTROL_NONE;
  400. USART_InitStruct.OverSampling = LL_USART_OVERSAMPLING_16;
  401. LL_USART_Init(USART1, &USART_InitStruct);
  402. LL_USART_SetTXFIFOThreshold(USART1, LL_USART_FIFOTHRESHOLD_1_8);
  403. LL_USART_SetRXFIFOThreshold(USART1, LL_USART_FIFOTHRESHOLD_1_8);
  404. LL_USART_DisableFIFO(USART1);
  405. LL_USART_ConfigAsyncMode(USART1);
  406. /* USER CODE BEGIN WKUPType USART1 */
  407. /* USER CODE END WKUPType USART1 */
  408. LL_USART_Enable(USART1);
  409. /* Polling USART1 initialisation */
  410. while((!(LL_USART_IsActiveFlag_TEACK(USART1))) || (!(LL_USART_IsActiveFlag_REACK(USART1))))
  411. {
  412. }
  413. /* USER CODE BEGIN USART1_Init 2 */
  414. /* USER CODE END USART1_Init 2 */
  415. }
  416. /**
  417. * Enable DMA controller clock
  418. */
  419. static void MX_DMA_Init(void)
  420. {
  421. /* Init with LL driver */
  422. /* DMA controller clock enable */
  423. LL_AHB1_GRP1_EnableClock(LL_AHB1_GRP1_PERIPH_DMA1);
  424. /* DMA interrupt init */
  425. /* DMA1_Channel1_IRQn interrupt configuration */
  426. NVIC_SetPriority(DMA1_Channel1_IRQn, 0);
  427. NVIC_EnableIRQ(DMA1_Channel1_IRQn);
  428. /* DMA1_Channel2_3_IRQn interrupt configuration */
  429. NVIC_SetPriority(DMA1_Channel2_3_IRQn, 0);
  430. NVIC_EnableIRQ(DMA1_Channel2_3_IRQn);
  431. }
  432. /**
  433. * @brief GPIO Initialization Function
  434. * @param None
  435. * @retval None
  436. */
  437. static void MX_GPIO_Init(void)
  438. {
  439. LL_EXTI_InitTypeDef EXTI_InitStruct = {0};
  440. LL_GPIO_InitTypeDef GPIO_InitStruct = {0};
  441. /* GPIO Ports Clock Enable */
  442. LL_IOP_GRP1_EnableClock(LL_IOP_GRP1_PERIPH_GPIOB);
  443. LL_IOP_GRP1_EnableClock(LL_IOP_GRP1_PERIPH_GPIOC);
  444. LL_IOP_GRP1_EnableClock(LL_IOP_GRP1_PERIPH_GPIOA);
  445. /**/
  446. LL_GPIO_ResetOutputPin(UART_EN_GPIO_Port, UART_EN_Pin);
  447. /**/
  448. LL_GPIO_ResetOutputPin(LC0_GPIO_Port, LC0_Pin);
  449. /**/
  450. LL_GPIO_ResetOutputPin(LC1_GPIO_Port, LC1_Pin);
  451. /**/
  452. LL_GPIO_ResetOutputPin(LC2_GPIO_Port, LC2_Pin);
  453. /**/
  454. LL_GPIO_ResetOutputPin(LC3_GPIO_Port, LC3_Pin);
  455. /**/
  456. LL_GPIO_ResetOutputPin(SHDN_GPIO_Port, SHDN_Pin);
  457. /**/
  458. LL_GPIO_ResetOutputPin(Latch_GPIO_Port, Latch_Pin);
  459. /**/
  460. LL_EXTI_SetEXTISource(LL_EXTI_CONFIG_PORTC, LL_EXTI_CONFIG_LINE14);
  461. /**/
  462. EXTI_InitStruct.Line_0_31 = LL_EXTI_LINE_14;
  463. EXTI_InitStruct.LineCommand = ENABLE;
  464. EXTI_InitStruct.Mode = LL_EXTI_MODE_IT;
  465. EXTI_InitStruct.Trigger = LL_EXTI_TRIGGER_RISING;
  466. LL_EXTI_Init(&EXTI_InitStruct);
  467. /**/
  468. LL_GPIO_SetPinPull(IRQ_GPIO_Port, IRQ_Pin, LL_GPIO_PULL_UP);
  469. /**/
  470. LL_GPIO_SetPinMode(IRQ_GPIO_Port, IRQ_Pin, LL_GPIO_MODE_INPUT);
  471. /**/
  472. GPIO_InitStruct.Pin = UART_EN_Pin;
  473. GPIO_InitStruct.Mode = LL_GPIO_MODE_OUTPUT;
  474. GPIO_InitStruct.Speed = LL_GPIO_SPEED_FREQ_LOW;
  475. GPIO_InitStruct.OutputType = LL_GPIO_OUTPUT_PUSHPULL;
  476. GPIO_InitStruct.Pull = LL_GPIO_PULL_NO;
  477. LL_GPIO_Init(UART_EN_GPIO_Port, &GPIO_InitStruct);
  478. /**/
  479. GPIO_InitStruct.Pin = LC0_Pin;
  480. GPIO_InitStruct.Mode = LL_GPIO_MODE_OUTPUT;
  481. GPIO_InitStruct.Speed = LL_GPIO_SPEED_FREQ_HIGH;
  482. GPIO_InitStruct.OutputType = LL_GPIO_OUTPUT_PUSHPULL;
  483. GPIO_InitStruct.Pull = LL_GPIO_PULL_DOWN;
  484. LL_GPIO_Init(LC0_GPIO_Port, &GPIO_InitStruct);
  485. /**/
  486. GPIO_InitStruct.Pin = LC1_Pin;
  487. GPIO_InitStruct.Mode = LL_GPIO_MODE_OUTPUT;
  488. GPIO_InitStruct.Speed = LL_GPIO_SPEED_FREQ_HIGH;
  489. GPIO_InitStruct.OutputType = LL_GPIO_OUTPUT_PUSHPULL;
  490. GPIO_InitStruct.Pull = LL_GPIO_PULL_DOWN;
  491. LL_GPIO_Init(LC1_GPIO_Port, &GPIO_InitStruct);
  492. /**/
  493. GPIO_InitStruct.Pin = LC2_Pin;
  494. GPIO_InitStruct.Mode = LL_GPIO_MODE_OUTPUT;
  495. GPIO_InitStruct.Speed = LL_GPIO_SPEED_FREQ_HIGH;
  496. GPIO_InitStruct.OutputType = LL_GPIO_OUTPUT_PUSHPULL;
  497. GPIO_InitStruct.Pull = LL_GPIO_PULL_DOWN;
  498. LL_GPIO_Init(LC2_GPIO_Port, &GPIO_InitStruct);
  499. /**/
  500. GPIO_InitStruct.Pin = LC3_Pin;
  501. GPIO_InitStruct.Mode = LL_GPIO_MODE_OUTPUT;
  502. GPIO_InitStruct.Speed = LL_GPIO_SPEED_FREQ_HIGH;
  503. GPIO_InitStruct.OutputType = LL_GPIO_OUTPUT_PUSHPULL;
  504. GPIO_InitStruct.Pull = LL_GPIO_PULL_DOWN;
  505. LL_GPIO_Init(LC3_GPIO_Port, &GPIO_InitStruct);
  506. /**/
  507. GPIO_InitStruct.Pin = SHDN_Pin;
  508. GPIO_InitStruct.Mode = LL_GPIO_MODE_OUTPUT;
  509. GPIO_InitStruct.Speed = LL_GPIO_SPEED_FREQ_HIGH;
  510. GPIO_InitStruct.OutputType = LL_GPIO_OUTPUT_PUSHPULL;
  511. GPIO_InitStruct.Pull = LL_GPIO_PULL_DOWN;
  512. LL_GPIO_Init(SHDN_GPIO_Port, &GPIO_InitStruct);
  513. /**/
  514. GPIO_InitStruct.Pin = BTN4_Pin;
  515. GPIO_InitStruct.Mode = LL_GPIO_MODE_INPUT;
  516. GPIO_InitStruct.Pull = LL_GPIO_PULL_UP;
  517. LL_GPIO_Init(BTN4_GPIO_Port, &GPIO_InitStruct);
  518. /**/
  519. GPIO_InitStruct.Pin = BTN1_Pin;
  520. GPIO_InitStruct.Mode = LL_GPIO_MODE_INPUT;
  521. GPIO_InitStruct.Pull = LL_GPIO_PULL_UP;
  522. LL_GPIO_Init(BTN1_GPIO_Port, &GPIO_InitStruct);
  523. /**/
  524. GPIO_InitStruct.Pin = Latch_Pin;
  525. GPIO_InitStruct.Mode = LL_GPIO_MODE_OUTPUT;
  526. GPIO_InitStruct.Speed = LL_GPIO_SPEED_FREQ_HIGH;
  527. GPIO_InitStruct.OutputType = LL_GPIO_OUTPUT_OPENDRAIN;
  528. GPIO_InitStruct.Pull = LL_GPIO_PULL_NO;
  529. LL_GPIO_Init(Latch_GPIO_Port, &GPIO_InitStruct);
  530. /**/
  531. GPIO_InitStruct.Pin = BTN2_Pin;
  532. GPIO_InitStruct.Mode = LL_GPIO_MODE_INPUT;
  533. GPIO_InitStruct.Pull = LL_GPIO_PULL_UP;
  534. LL_GPIO_Init(BTN2_GPIO_Port, &GPIO_InitStruct);
  535. /**/
  536. GPIO_InitStruct.Pin = UART_ST_Pin;
  537. GPIO_InitStruct.Mode = LL_GPIO_MODE_INPUT;
  538. GPIO_InitStruct.Pull = LL_GPIO_PULL_UP;
  539. LL_GPIO_Init(UART_ST_GPIO_Port, &GPIO_InitStruct);
  540. /**/
  541. GPIO_InitStruct.Pin = BTN3_Pin;
  542. GPIO_InitStruct.Mode = LL_GPIO_MODE_INPUT;
  543. GPIO_InitStruct.Pull = LL_GPIO_PULL_UP;
  544. LL_GPIO_Init(BTN3_GPIO_Port, &GPIO_InitStruct);
  545. /* EXTI interrupt init*/
  546. NVIC_SetPriority(EXTI4_15_IRQn, 0);
  547. NVIC_EnableIRQ(EXTI4_15_IRQn);
  548. }
  549. /* USER CODE BEGIN 4 */
  550. /*************************
  551. * S U B R O U T I N E S *
  552. *************************/
  553. /**
  554. * @brief Out digits to SPI buffer. ON/off tube power.
  555. * @param : array with four BCD digits
  556. * @retval : None
  557. */
  558. static void showDigits(uint8_t * dig)
  559. {
  560. /* Clear buffer */
  561. tubesBuffer[0] = 0;
  562. tubesBuffer[1] = 0;
  563. tubesBuffer[2] = 0;
  564. tubesBuffer[3] = 0;
  565. tubesBuffer[4] = 0;
  566. /* check values range */
  567. int i;
  568. for (i=0; i<4; i++) {
  569. if (dig[i] > 9) {
  570. if (dig[i] != 0xf) {
  571. dig[i] = 0;
  572. }
  573. }
  574. }
  575. /* Wait for SPI */
  576. while (Flag.SPI_TX_End == 0) {};
  577. Flag.SPI_TX_End = 0;
  578. /* Feel buffer */
  579. tubesBuffer[0] = (uint8_t)(nixieCathodeMap[Tube_E][dig[Tube_E]] >> 8);
  580. tubesBuffer[1] = (uint8_t)((nixieCathodeMap[Tube_E][dig[Tube_E]]) | (nixieCathodeMap[Tube_D][dig[Tube_D]] >> 8));
  581. tubesBuffer[2] = (uint8_t)((nixieCathodeMap[Tube_D][dig[Tube_D]]) | (nixieCathodeMap[Tube_B][dig[Tube_B]] >> 8));
  582. tubesBuffer[3] = (uint8_t)((nixieCathodeMap[Tube_B][dig[Tube_B]]) | (nixieCathodeMap[Tube_A][dig[Tube_A]] >> 8));
  583. tubesBuffer[4] = (uint8_t)(nixieCathodeMap[Tube_A][dig[Tube_A]]);
  584. /* Start DMA transfer to SPI */
  585. DMA1_Channel1->CCR |= DMA_CCR_EN;
  586. /* On/Off tube power */
  587. if (dig[Tube_A] == 0xf) {
  588. TUBE_A_OFF;
  589. } else {
  590. TUBE_A_ON;
  591. }
  592. if (dig[Tube_B] == 0xf) {
  593. TUBE_B_OFF;
  594. } else {
  595. TUBE_B_ON;
  596. }
  597. if (dig[Tube_D] == 0xf) {
  598. TUBE_D_OFF;
  599. } else {
  600. TUBE_D_ON;
  601. }
  602. if (dig[Tube_E] == 0xf) {
  603. TUBE_E_OFF;
  604. } else {
  605. TUBE_E_ON;
  606. }
  607. }
  608. /**
  609. * @brief Вывод HEX значений цвета в таймер.
  610. * @param : RGB value in range 0x00-0xFF
  611. * @retval : None
  612. */
  613. static void Color_RGB(uint8_t r, uint8_t g, uint8_t b) {
  614. /* Более быстрый вариант, на пробу. */
  615. COLOR_R(r * 4);
  616. COLOR_G(g * 4);
  617. COLOR_B(b * 4);
  618. /* Предварительный обсчёт в переменные сделан для того,
  619. что-бы вывести значения в таймер максимально одновременно. */
  620. /*
  621. uint32_t val_r, val_g, val_b;
  622. // * 999 + 127 / 255 ???
  623. val_r = ((uint32_t)(r * 1000) + 128) / 256;
  624. val_g = ((uint32_t)(g * 1000) + 128) / 256;
  625. val_b = ((uint32_t)(b * 1000) + 128) / 256;
  626. COLOR_R((uint16_t)val_r);
  627. COLOR_G((uint16_t)val_g);
  628. COLOR_B((uint16_t)val_b);
  629. */
  630. }
  631. /**
  632. * @brief Обработка кнопок.
  633. * @param : None
  634. * @retval : None
  635. */
  636. static void btnProcess(void) {
  637. /* get pin state */
  638. uint32_t pins = BTNS_STATE;
  639. int i;
  640. for (i=0; i<BTN_NUM; i++) {
  641. if ((pins & Button[i].pin) == 0) {
  642. /* button pressed */
  643. Button[i].time ++;
  644. if (Button[i].time >= (BTN_TIME_HOLDED/BTN_SCAN_PERIOD)) {
  645. Button[i].time -= (BTN_TIME_REPEATED/BTN_SCAN_PERIOD);
  646. if (Button[i].holded == Button[i].pressed) {
  647. /* if pressed and holded - same function, then button pressed auto repeat */
  648. ES_PlaceEvent(Button[i].pressed);
  649. }
  650. }
  651. } else if (Button[i].time != 0) {
  652. /* button released */
  653. if (Button[i].time >= ((BTN_TIME_HOLDED - BTN_TIME_REPEATED)/BTN_SCAN_PERIOD)) {
  654. /* process long press */
  655. ES_PlaceEvent(Button[i].holded);
  656. } else if (Button[i].time >= (BTN_TIME_PRESSED/BTN_SCAN_PERIOD)) {
  657. /* process short press */
  658. ES_PlaceEvent(Button[i].pressed);
  659. }
  660. Button[i].time = 0;
  661. RTOS_SetTask(btnProcess, BTN_SCAN_PAUSE, BTN_SCAN_PERIOD);
  662. }
  663. } /* end FOR */
  664. }
  665. /**
  666. * On/off symbols on IN-15 tube.
  667. */
  668. void in15Off(void) {
  669. IN15_OFF;
  670. TUBE_C_OFF;
  671. }
  672. void in15Minus(void) {
  673. IN15_OFF;
  674. IN15_Minus;
  675. TUBE_C_ON;
  676. }
  677. void in15Plus(void) {
  678. IN15_OFF;
  679. IN15_Plus;
  680. TUBE_C_ON;
  681. }
  682. void in15Percent(void) {
  683. IN15_OFF;
  684. IN15_Percent;
  685. TUBE_C_ON;
  686. }
  687. void in15P(void) {
  688. IN15_OFF;
  689. IN15_P;
  690. TUBE_C_ON;
  691. }
  692. void showTime(void) {
  693. in15Minus();
  694. RTOS_SetTask(in15Off, 500, 0);
  695. uint8_t buf[4];
  696. buf[Tube_A] = Clock.Hr >> 4;
  697. buf[Tube_B] = Clock.Hr & 0xf;
  698. buf[Tube_D] = Clock.Min >> 4;
  699. buf[Tube_E] = Clock.Min & 0xf;
  700. showDigits(buf);
  701. }
  702. /**
  703. * Show info on tubes.
  704. */
  705. void showWD(void) {
  706. dispWDT = DISP_WDT_TIME;
  707. IN15_OFF;
  708. uint8_t buf[4];
  709. buf[Tube_A] = 0xf;
  710. buf[Tube_B] = Clock.WD & 0xf;
  711. buf[Tube_D] = 0xf;
  712. buf[Tube_E] = 0xf;
  713. showDigits(buf);
  714. }
  715. void showDay(void) {
  716. dispWDT = DISP_WDT_TIME;
  717. IN15_OFF;
  718. uint8_t buf[4];
  719. buf[Tube_A] = Clock.Day >> 4;
  720. buf[Tube_B] = Clock.Day & 0xf;
  721. buf[Tube_D] = 0xf;
  722. buf[Tube_E] = 0xf;
  723. showDigits(buf);
  724. }
  725. void showMonth(void) {
  726. dispWDT = DISP_WDT_TIME;
  727. IN15_OFF;
  728. uint8_t buf[4];
  729. buf[Tube_A] = 0xf;
  730. buf[Tube_B] = 0xf;
  731. buf[Tube_D] = Clock.Mon >> 4;
  732. buf[Tube_E] = Clock.Mon & 0xf;
  733. showDigits(buf);
  734. }
  735. void showDayMon(void) {
  736. dispWDT = DISP_WDT_TIME;
  737. IN15_OFF;
  738. uint8_t buf[4];
  739. buf[Tube_A] = Clock.Day >> 4;
  740. buf[Tube_B] = Clock.Day & 0xf;
  741. buf[Tube_D] = Clock.Mon >> 4;
  742. buf[Tube_E] = Clock.Mon & 0xf;
  743. showDigits(buf);
  744. }
  745. void showYear(void) {
  746. dispWDT = DISP_WDT_TIME;
  747. IN15_OFF;
  748. uint8_t buf[4];
  749. buf[Tube_A] = 2;
  750. buf[Tube_B] = 0;
  751. buf[Tube_D] = Clock.Year >> 4;
  752. buf[Tube_E] = Clock.Year & 0xf;
  753. showDigits(buf);
  754. }
  755. void showHumidity(void) {
  756. dispWDT = DISP_WDT_TIME;
  757. in15Percent();
  758. uint8_t buf[4];
  759. buf[Tube_A] = Humidity >> 4;
  760. buf[Tube_B] = Humidity & 0xf;
  761. buf[Tube_D] = 0xf;
  762. buf[Tube_E] = 0xf;
  763. showDigits(buf);
  764. }
  765. void showTemperature(void) {
  766. dispWDT = DISP_WDT_TIME;
  767. in15Plus();
  768. uint8_t buf[4];
  769. buf[Tube_A] = 0xf;
  770. buf[Tube_B] = 0xf;
  771. buf[Tube_D] = Temperature >> 4;
  772. buf[Tube_E] = Temperature & 0xf;
  773. showDigits(buf);
  774. }
  775. void showPressure(void) {
  776. dispWDT = DISP_WDT_TIME;
  777. in15P();
  778. uint8_t buf[4];
  779. buf[Tube_A] = 0xf;
  780. buf[Tube_B] = Pressure.s16.u8H & 0xf;
  781. buf[Tube_D] = Pressure.s16.u8L >> 4;
  782. buf[Tube_E] = Pressure.s16.u8L & 0xf;
  783. showDigits(buf);
  784. }
  785. /* Simple function for cyclic show all sensor data */
  786. void showSensorData(void) {
  787. ES_SetState(stShowSensorData);
  788. showTemperature();
  789. tdelay_ms(3000);
  790. showHumidity();
  791. tdelay_ms(3000);
  792. showPressure();
  793. tdelay_ms(3000);
  794. ES_SetState(stShowTime);
  795. showTime();
  796. }
  797. /* USER CODE END 4 */
  798. /**
  799. * @brief This function is executed in case of error occurrence.
  800. * @retval None
  801. */
  802. void Error_Handler(void)
  803. {
  804. /* USER CODE BEGIN Error_Handler_Debug */
  805. /* User can add his own implementation to report the HAL error return state */
  806. __disable_irq();
  807. while (1)
  808. {
  809. }
  810. /* USER CODE END Error_Handler_Debug */
  811. }
  812. #ifdef USE_FULL_ASSERT
  813. /**
  814. * @brief Reports the name of the source file and the source line number
  815. * where the assert_param error has occurred.
  816. * @param file: pointer to the source file name
  817. * @param line: assert_param error line source number
  818. * @retval None
  819. */
  820. void assert_failed(uint8_t *file, uint32_t line)
  821. {
  822. /* USER CODE BEGIN 6 */
  823. /* User can add his own implementation to report the file name and line number,
  824. ex: printf("Wrong parameters value: file %s on line %d\r\n", file, line) */
  825. /* USER CODE END 6 */
  826. }
  827. #endif /* USE_FULL_ASSERT */
  828. /************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/