main.c 20 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762
  1. /* USER CODE BEGIN Header */
  2. /**
  3. ******************************************************************************
  4. * @file : main.c
  5. * @brief : Main program body
  6. ******************************************************************************
  7. * @attention
  8. *
  9. * <h2><center>&copy; Copyright (c) 2021 STMicroelectronics.
  10. * All rights reserved.</center></h2>
  11. *
  12. * This software component is licensed by ST under BSD 3-Clause license,
  13. * the "License"; You may not use this file except in compliance with the
  14. * License. You may obtain a copy of the License at:
  15. * opensource.org/licenses/BSD-3-Clause
  16. *
  17. ******************************************************************************
  18. */
  19. /* USER CODE END Header */
  20. /* Includes ------------------------------------------------------------------*/
  21. #include "main.h"
  22. /* Private includes ----------------------------------------------------------*/
  23. /* USER CODE BEGIN Includes */
  24. /* USER CODE END Includes */
  25. /* Private typedef -----------------------------------------------------------*/
  26. /* USER CODE BEGIN PTD */
  27. typedef enum {
  28. Tube_A = 3,
  29. Tube_B = 2,
  30. Tube_D = 1,
  31. Tube_E = 0
  32. } tube_pos_t;
  33. /* USER CODE END PTD */
  34. /* Private define ------------------------------------------------------------*/
  35. /* USER CODE BEGIN PD */
  36. #define SPI_BUFFER_SIZE 5
  37. /* Display timeout, sec */
  38. #define DISP_WDT_TIME 10
  39. /* USER CODE END PD */
  40. /* Private macro -------------------------------------------------------------*/
  41. /* USER CODE BEGIN PM */
  42. /* USER CODE END PM */
  43. /* Private variables ---------------------------------------------------------*/
  44. /* USER CODE BEGIN PV */
  45. volatile flag_t Flag = {0};
  46. static LL_RCC_ClocksTypeDef rcc_clocks;
  47. /**
  48. * Nixi Tube cathodes map in Byte Array:
  49. * {E0 E9 E8 E7 E6 E5 E4 E3}
  50. * {E2 E1 D0 D9 D8 D7 D6 D5}
  51. * {D4 D3 D2 D1 B0 B9 B8 B7}
  52. * {B6 B5 B4 B3 B2 B1 A0 A9}
  53. * {A8 A7 A6 A5 A4 A3 A2 A1}
  54. *
  55. * Shift register bit map in Tube cathodes (from 0 to 1):
  56. * {5.7 5.6 5.5 5.4 5.3 5.2 5.1 5.0 4.7 4.6} VL5/E
  57. * {4.5 4.4 4.3 4.2 4.1 4.0 3.7 3.6 3.5 3.4} VL4/D
  58. * {3.3 3.2 3.1 3.0 2.7 2.6 2.5 2.4 2.3 2.2} VL2/B
  59. * {2.1 2.0 1.7 1.6 1.5 1.4 1.3 1.2 1.1 1.0} VL1/A
  60. */
  61. static const uint16_t nixieCathodeMap[4][10] = {
  62. {0x8000, 0x0040, 0x0080, 0x0100, 0x0200, 0x0400, 0x0800, 0x1000, 0x2000, 0x4000},
  63. {0x2000, 0x0010, 0x0020, 0x0040, 0x0080, 0x0100, 0x0200, 0x0400, 0x0800, 0x1000},
  64. {0x0800, 0x0004, 0x0008, 0x0010, 0x0020, 0x0040, 0x0080, 0x0100, 0x0200, 0x0400},
  65. {0x0200, 0x0001, 0x0002, 0x0004, 0x0008, 0x0010, 0x0020, 0x0040, 0x0080, 0x0100}
  66. };
  67. //static const uint8_t nixieCathodeMask[4][2] = {{0x00, 0x3f}, {0xc0, 0x0f}, {0xf0, 0x03}, {0xc0, 0x00}};
  68. static uint8_t tubesBuffer[SPI_BUFFER_SIZE] = {0};
  69. static rtc_t Clock;
  70. static struct bme280_dev SensorDev;
  71. static struct bme280_data SensorData;
  72. static int8_t Humidity, Temperature;
  73. static nt16_t Pressure;
  74. static btn_t Button[BTN_NUM] = {
  75. {0, evBTN1Pressed, evBTN1Holded, BTN1_PIN},
  76. {0, evBTN2Pressed, evBTN2Pressed, BTN2_PIN},
  77. {0, evBTN3Pressed, evBTN3Pressed, BTN3_PIN},
  78. {0, evBTN4Pressed, evBTN4Holded, BTN4_PIN}
  79. };
  80. static volatile uint8_t dispWDT = 0;
  81. /* USER CODE END PV */
  82. /* Private function prototypes -----------------------------------------------*/
  83. static void MX_I2C1_Init(void);
  84. static void MX_SPI1_Init(void);
  85. /* USER CODE BEGIN PFP */
  86. static void showDigits(uint8_t * dig);
  87. static void sensor_Init(void);
  88. static void sensorStartMeasure(void);
  89. static void sensorGetData(void);
  90. static void btnProcess(void);
  91. static void Color_RGB(uint8_t r, uint8_t g, uint8_t b);
  92. /* USER CODE END PFP */
  93. /* Private user code ---------------------------------------------------------*/
  94. /* USER CODE BEGIN 0 */
  95. /* USER CODE END 0 */
  96. /**
  97. * @brief The application entry point.
  98. * @retval int
  99. */
  100. int main(void)
  101. {
  102. /* Initialize onBoard Hardware */
  103. Board_Init();
  104. /* Initialize all configured peripherals */
  105. MX_I2C1_Init();
  106. MX_SPI1_Init();
  107. /* USER CODE BEGIN 2 */
  108. /* Initialize Scheduler */
  109. RTOS_Init();
  110. /* Initialize Event State Machine */
  111. ES_Init(stShowTime);
  112. /* Enable tube power */
  113. TUBE_PWR_ON;
  114. RTC_Init();
  115. sensor_Init();
  116. /** Star SPI transfer to shift registers */
  117. /* Set DMA source and destination addresses. */
  118. /* Source: Address of the SPI buffer. */
  119. DMA1_Channel1->CMAR = (uint32_t)&tubesBuffer;
  120. /* Destination: SPI1 data register. */
  121. DMA1_Channel1->CPAR = (uint32_t)&(SPI1->DR);
  122. /* Set DMA data transfer length (SPI buffer length). */
  123. DMA1_Channel1->CNDTR = SPI_BUFFER_SIZE;
  124. /* Enable SPI+DMA transfer */
  125. SPI1->CR2 |= SPI_CR2_TXDMAEN;
  126. SPI1->CR1 |= SPI_CR1_SPE;
  127. Flag.SPI_TX_End = 1;
  128. /** Set tasks for Sheduler */
  129. RTOS_SetTask(btnProcess, 1, BTN_SCAN_PERIOD);
  130. /* USER CODE END 2 */
  131. /* USER CODE BEGIN WHILE */
  132. RTC_ReadAll(&Clock);
  133. es_event_t event = eventNull;
  134. Color_RGB(0xFF, 0x12, 0x0); // Nixie color. FF1200 or FF7E00 or FFBF00
  135. showTime();
  136. /* Infinite loop */
  137. while (1)
  138. {
  139. /* new second interrupt from RTC */
  140. if (Flag.RTC_IRQ != 0) {
  141. Flag.RTC_IRQ = 0;
  142. Blink_Start(); // !!! TODO
  143. RTC_ReadAll(&Clock);
  144. if (dispWDT != 0) {
  145. dispWDT --;
  146. if (dispWDT == 0) {
  147. ES_PlaceEvent(evDisplayWDT);
  148. }
  149. }
  150. } /* end of New second */
  151. /* USER CODE END WHILE */
  152. /* USER CODE BEGIN 3 */
  153. event = ES_GetEvent();
  154. if (event) {
  155. ES_Dispatch(event);
  156. }
  157. RTOS_DispatchTask();
  158. __WFI();
  159. }
  160. /* USER CODE END 3 */
  161. } /* End of mine() */
  162. /**
  163. * Sensor
  164. */
  165. static void sensor_Init(void) {
  166. int8_t rsltSensor;
  167. Flag.BME280 = 0;
  168. SensorDev.dev_id = (BME280_I2C_ADDR_PRIM << 1);
  169. SensorDev.intf = BME280_I2C_INTF;
  170. SensorDev.read = user_i2c_read;
  171. SensorDev.write = user_i2c_write;
  172. SensorDev.delay_ms = tdelay_ms;
  173. rsltSensor = bme280_init(&SensorDev);
  174. if (rsltSensor == BME280_OK) {
  175. Flag.BME280 = 1;
  176. /* BME280 Recommended mode of operation: Indoor navigation */
  177. SensorDev.settings.osr_h = BME280_OVERSAMPLING_1X;
  178. SensorDev.settings.osr_p = BME280_OVERSAMPLING_16X;
  179. SensorDev.settings.osr_t = BME280_OVERSAMPLING_2X;
  180. SensorDev.settings.filter = BME280_FILTER_COEFF_16;
  181. rsltSensor = bme280_set_sensor_settings((BME280_OSR_PRESS_SEL | BME280_OSR_TEMP_SEL | BME280_OSR_HUM_SEL | BME280_FILTER_SEL), &SensorDev);
  182. RTOS_SetTask(sensorStartMeasure, 103, 1000);
  183. RTOS_SetTask(sensorGetData, 603, 1000);
  184. }
  185. }
  186. static void sensorStartMeasure(void) {
  187. bme280_set_sensor_mode(BME280_FORCED_MODE, &SensorDev);
  188. }
  189. static void sensorGetData(void) {
  190. bme280_get_sensor_data(BME280_ALL, &SensorData, &SensorDev);
  191. int32_t tmp;
  192. tmp = SensorData.humidity + 512;
  193. Humidity = (int8_t)(tmp / 1024);
  194. tmp = SensorData.temperature + 50;
  195. Temperature = (int8_t)(tmp / 100);
  196. /* in 32-bit arithmetics pressure in Pa */
  197. tmp = SensorData.pressure * 1000;
  198. tmp += 66661;
  199. tmp /= 133322;
  200. /* pressure in mmHg */
  201. Pressure.s16.u8H = (uint8_t)(tmp / 100);
  202. Pressure.s16.u8L = (uint8_t)(tmp % 100);
  203. }
  204. /**
  205. * @brief I2C1 Initialization Function
  206. * @param None
  207. * @retval None
  208. */
  209. static void MX_I2C1_Init(void)
  210. {
  211. /* USER CODE BEGIN I2C1_Init 0 */
  212. /* USER CODE END I2C1_Init 0 */
  213. LL_I2C_InitTypeDef I2C_InitStruct = {0};
  214. LL_GPIO_InitTypeDef GPIO_InitStruct = {0};
  215. LL_IOP_GRP1_EnableClock(LL_IOP_GRP1_PERIPH_GPIOB);
  216. /**I2C1 GPIO Configuration
  217. PB8 ------> I2C1_SCL
  218. PB9 ------> I2C1_SDA
  219. */
  220. GPIO_InitStruct.Pin = LL_GPIO_PIN_8;
  221. GPIO_InitStruct.Mode = LL_GPIO_MODE_ALTERNATE;
  222. GPIO_InitStruct.Speed = LL_GPIO_SPEED_FREQ_HIGH;
  223. GPIO_InitStruct.OutputType = LL_GPIO_OUTPUT_OPENDRAIN;
  224. GPIO_InitStruct.Pull = LL_GPIO_PULL_UP;
  225. GPIO_InitStruct.Alternate = LL_GPIO_AF_6;
  226. LL_GPIO_Init(GPIOB, &GPIO_InitStruct);
  227. GPIO_InitStruct.Pin = LL_GPIO_PIN_9;
  228. GPIO_InitStruct.Mode = LL_GPIO_MODE_ALTERNATE;
  229. GPIO_InitStruct.Speed = LL_GPIO_SPEED_FREQ_HIGH;
  230. GPIO_InitStruct.OutputType = LL_GPIO_OUTPUT_OPENDRAIN;
  231. GPIO_InitStruct.Pull = LL_GPIO_PULL_UP;
  232. GPIO_InitStruct.Alternate = LL_GPIO_AF_6;
  233. LL_GPIO_Init(GPIOB, &GPIO_InitStruct);
  234. /* Peripheral clock enable */
  235. LL_APB1_GRP1_EnableClock(LL_APB1_GRP1_PERIPH_I2C1);
  236. /* I2C1 DMA Init */
  237. /* I2C1_RX Init */
  238. LL_DMA_SetPeriphRequest(DMA1, LL_DMA_CHANNEL_2, LL_DMAMUX_REQ_I2C1_RX);
  239. LL_DMA_SetDataTransferDirection(DMA1, LL_DMA_CHANNEL_2, LL_DMA_DIRECTION_PERIPH_TO_MEMORY);
  240. LL_DMA_SetChannelPriorityLevel(DMA1, LL_DMA_CHANNEL_2, LL_DMA_PRIORITY_MEDIUM);
  241. LL_DMA_SetPeriphIncMode(DMA1, LL_DMA_CHANNEL_2, LL_DMA_PERIPH_NOINCREMENT);
  242. LL_DMA_SetMemoryIncMode(DMA1, LL_DMA_CHANNEL_2, LL_DMA_MEMORY_INCREMENT);
  243. LL_DMA_SetPeriphSize(DMA1, LL_DMA_CHANNEL_2, LL_DMA_PDATAALIGN_BYTE);
  244. LL_DMA_SetMemorySize(DMA1, LL_DMA_CHANNEL_2, LL_DMA_MDATAALIGN_BYTE);
  245. /* I2C1_TX Init */
  246. LL_DMA_SetPeriphRequest(DMA1, LL_DMA_CHANNEL_3, LL_DMAMUX_REQ_I2C1_TX);
  247. LL_DMA_SetDataTransferDirection(DMA1, LL_DMA_CHANNEL_3, LL_DMA_DIRECTION_MEMORY_TO_PERIPH);
  248. LL_DMA_SetChannelPriorityLevel(DMA1, LL_DMA_CHANNEL_3, LL_DMA_PRIORITY_MEDIUM);
  249. LL_DMA_SetPeriphIncMode(DMA1, LL_DMA_CHANNEL_3, LL_DMA_PERIPH_NOINCREMENT);
  250. LL_DMA_SetMemoryIncMode(DMA1, LL_DMA_CHANNEL_3, LL_DMA_MEMORY_INCREMENT);
  251. LL_DMA_SetPeriphSize(DMA1, LL_DMA_CHANNEL_3, LL_DMA_PDATAALIGN_BYTE);
  252. LL_DMA_SetMemorySize(DMA1, LL_DMA_CHANNEL_3, LL_DMA_MDATAALIGN_BYTE);
  253. /* I2C1 interrupt Init */
  254. /* USER CODE BEGIN I2C1_Init 1 */
  255. /* Enable DMA transfer complete/error interrupts */
  256. LL_DMA_EnableIT_TC(DMA1, LL_DMA_CHANNEL_2);
  257. LL_DMA_EnableIT_TE(DMA1, LL_DMA_CHANNEL_2);
  258. LL_DMA_EnableIT_TC(DMA1, LL_DMA_CHANNEL_3);
  259. LL_DMA_EnableIT_TE(DMA1, LL_DMA_CHANNEL_3);
  260. /* USER CODE END I2C1_Init 1 */
  261. /** I2C Initialization
  262. */
  263. I2C_InitStruct.PeripheralMode = LL_I2C_MODE_I2C;
  264. I2C_InitStruct.Timing = 0x0010061A;
  265. I2C_InitStruct.AnalogFilter = LL_I2C_ANALOGFILTER_ENABLE;
  266. I2C_InitStruct.DigitalFilter = 0;
  267. I2C_InitStruct.OwnAddress1 = 0;
  268. I2C_InitStruct.TypeAcknowledge = LL_I2C_ACK;
  269. I2C_InitStruct.OwnAddrSize = LL_I2C_OWNADDRESS1_7BIT;
  270. LL_I2C_EnableAutoEndMode(I2C1);
  271. LL_I2C_SetOwnAddress2(I2C1, 0, LL_I2C_OWNADDRESS2_NOMASK);
  272. LL_I2C_DisableOwnAddress2(I2C1);
  273. LL_I2C_DisableGeneralCall(I2C1);
  274. LL_I2C_DisableClockStretching(I2C1);
  275. LL_I2C_Init(I2C1, &I2C_InitStruct);
  276. /* USER CODE BEGIN I2C1_Init 2 */
  277. /* USER CODE END I2C1_Init 2 */
  278. }
  279. /**
  280. * @brief SPI1 Initialization Function
  281. * @param None
  282. * @retval None
  283. */
  284. static void MX_SPI1_Init(void)
  285. {
  286. /* USER CODE BEGIN SPI1_Init 0 */
  287. /* USER CODE END SPI1_Init 0 */
  288. LL_SPI_InitTypeDef SPI_InitStruct = {0};
  289. LL_GPIO_InitTypeDef GPIO_InitStruct = {0};
  290. /* Peripheral clock enable */
  291. LL_APB2_GRP1_EnableClock(LL_APB2_GRP1_PERIPH_SPI1);
  292. LL_IOP_GRP1_EnableClock(LL_IOP_GRP1_PERIPH_GPIOB);
  293. /**SPI1 GPIO Configuration
  294. PB3 ------> SPI1_SCK
  295. PB5 ------> SPI1_MOSI
  296. */
  297. GPIO_InitStruct.Pin = LL_GPIO_PIN_3;
  298. GPIO_InitStruct.Mode = LL_GPIO_MODE_ALTERNATE;
  299. GPIO_InitStruct.Speed = LL_GPIO_SPEED_FREQ_HIGH;
  300. GPIO_InitStruct.OutputType = LL_GPIO_OUTPUT_OPENDRAIN;
  301. GPIO_InitStruct.Pull = LL_GPIO_PULL_NO;
  302. GPIO_InitStruct.Alternate = LL_GPIO_AF_0;
  303. LL_GPIO_Init(GPIOB, &GPIO_InitStruct);
  304. GPIO_InitStruct.Pin = LL_GPIO_PIN_5;
  305. GPIO_InitStruct.Mode = LL_GPIO_MODE_ALTERNATE;
  306. GPIO_InitStruct.Speed = LL_GPIO_SPEED_FREQ_HIGH;
  307. GPIO_InitStruct.OutputType = LL_GPIO_OUTPUT_OPENDRAIN;
  308. GPIO_InitStruct.Pull = LL_GPIO_PULL_NO;
  309. GPIO_InitStruct.Alternate = LL_GPIO_AF_0;
  310. LL_GPIO_Init(GPIOB, &GPIO_InitStruct);
  311. /* SPI1 DMA Init */
  312. /* SPI1_TX Init */
  313. LL_DMA_SetPeriphRequest(DMA1, LL_DMA_CHANNEL_1, LL_DMAMUX_REQ_SPI1_TX);
  314. LL_DMA_SetDataTransferDirection(DMA1, LL_DMA_CHANNEL_1, LL_DMA_DIRECTION_MEMORY_TO_PERIPH);
  315. LL_DMA_SetChannelPriorityLevel(DMA1, LL_DMA_CHANNEL_1, LL_DMA_PRIORITY_HIGH);
  316. LL_DMA_SetMode(DMA1, LL_DMA_CHANNEL_1, LL_DMA_MODE_CIRCULAR);
  317. LL_DMA_SetPeriphIncMode(DMA1, LL_DMA_CHANNEL_1, LL_DMA_PERIPH_NOINCREMENT);
  318. LL_DMA_SetMemoryIncMode(DMA1, LL_DMA_CHANNEL_1, LL_DMA_MEMORY_INCREMENT);
  319. LL_DMA_SetPeriphSize(DMA1, LL_DMA_CHANNEL_1, LL_DMA_PDATAALIGN_BYTE);
  320. LL_DMA_SetMemorySize(DMA1, LL_DMA_CHANNEL_1, LL_DMA_MDATAALIGN_BYTE);
  321. /* SPI1 interrupt Init */
  322. NVIC_SetPriority(SPI1_IRQn, 0);
  323. NVIC_EnableIRQ(SPI1_IRQn);
  324. /* USER CODE BEGIN SPI1_Init 1 */
  325. /* Enable DMA transfer complete/error interrupts */
  326. LL_DMA_EnableIT_TC(DMA1, LL_DMA_CHANNEL_1);
  327. LL_DMA_EnableIT_TE(DMA1, LL_DMA_CHANNEL_1);
  328. /* USER CODE END SPI1_Init 1 */
  329. /* SPI1 parameter configuration*/
  330. SPI_InitStruct.TransferDirection = LL_SPI_FULL_DUPLEX;
  331. SPI_InitStruct.Mode = LL_SPI_MODE_MASTER;
  332. SPI_InitStruct.DataWidth = LL_SPI_DATAWIDTH_8BIT;
  333. SPI_InitStruct.ClockPolarity = LL_SPI_POLARITY_LOW;
  334. SPI_InitStruct.ClockPhase = LL_SPI_PHASE_1EDGE;
  335. SPI_InitStruct.NSS = LL_SPI_NSS_SOFT;
  336. SPI_InitStruct.BaudRate = LL_SPI_BAUDRATEPRESCALER_DIV16;
  337. SPI_InitStruct.BitOrder = LL_SPI_MSB_FIRST;
  338. SPI_InitStruct.CRCCalculation = LL_SPI_CRCCALCULATION_DISABLE;
  339. SPI_InitStruct.CRCPoly = 7;
  340. LL_SPI_Init(SPI1, &SPI_InitStruct);
  341. LL_SPI_SetStandard(SPI1, LL_SPI_PROTOCOL_MOTOROLA);
  342. LL_SPI_DisableNSSPulseMgt(SPI1);
  343. /* USER CODE BEGIN SPI1_Init 2 */
  344. /* USER CODE END SPI1_Init 2 */
  345. }
  346. /* USER CODE BEGIN 4 */
  347. /*************************
  348. * S U B R O U T I N E S *
  349. *************************/
  350. /**
  351. * @brief Out digits to SPI buffer. ON/off tube power.
  352. * @param : array with four BCD digits
  353. * @retval : None
  354. */
  355. static void showDigits(uint8_t * dig)
  356. {
  357. /* Clear buffer */
  358. tubesBuffer[0] = 0;
  359. tubesBuffer[1] = 0;
  360. tubesBuffer[2] = 0;
  361. tubesBuffer[3] = 0;
  362. tubesBuffer[4] = 0;
  363. /* check values range */
  364. int i;
  365. for (i=0; i<4; i++) {
  366. if (dig[i] > 9) {
  367. if (dig[i] != 0xf) {
  368. dig[i] = 0;
  369. }
  370. }
  371. }
  372. /* Wait for SPI */
  373. while (Flag.SPI_TX_End == 0) {};
  374. Flag.SPI_TX_End = 0;
  375. /* Feel buffer */
  376. tubesBuffer[0] = (uint8_t)(nixieCathodeMap[Tube_E][dig[Tube_E]] >> 8);
  377. tubesBuffer[1] = (uint8_t)((nixieCathodeMap[Tube_E][dig[Tube_E]]) | (nixieCathodeMap[Tube_D][dig[Tube_D]] >> 8));
  378. tubesBuffer[2] = (uint8_t)((nixieCathodeMap[Tube_D][dig[Tube_D]]) | (nixieCathodeMap[Tube_B][dig[Tube_B]] >> 8));
  379. tubesBuffer[3] = (uint8_t)((nixieCathodeMap[Tube_B][dig[Tube_B]]) | (nixieCathodeMap[Tube_A][dig[Tube_A]] >> 8));
  380. tubesBuffer[4] = (uint8_t)(nixieCathodeMap[Tube_A][dig[Tube_A]]);
  381. /* Start DMA transfer to SPI */
  382. DMA1_Channel1->CCR |= DMA_CCR_EN;
  383. /* On/Off tube power */
  384. if (dig[Tube_A] == 0xf) {
  385. TUBE_A_OFF;
  386. } else {
  387. TUBE_A_ON;
  388. }
  389. if (dig[Tube_B] == 0xf) {
  390. TUBE_B_OFF;
  391. } else {
  392. TUBE_B_ON;
  393. }
  394. if (dig[Tube_D] == 0xf) {
  395. TUBE_D_OFF;
  396. } else {
  397. TUBE_D_ON;
  398. }
  399. if (dig[Tube_E] == 0xf) {
  400. TUBE_E_OFF;
  401. } else {
  402. TUBE_E_ON;
  403. }
  404. }
  405. /**
  406. * @brief Вывод HEX значений цвета в таймер.
  407. * @param : RGB value in range 0x00-0xFF
  408. * @retval : None
  409. */
  410. static void Color_RGB(uint8_t r, uint8_t g, uint8_t b) {
  411. /* Более быстрый вариант, на пробу. */
  412. COLOR_R(r * 4);
  413. COLOR_G(g * 4);
  414. COLOR_B(b * 4);
  415. /* Предварительный обсчёт в переменные сделан для того,
  416. что-бы вывести значения в таймер максимально одновременно. */
  417. /*
  418. uint32_t val_r, val_g, val_b;
  419. // * 999 + 127 / 255 ???
  420. val_r = ((uint32_t)(r * 1000) + 128) / 256;
  421. val_g = ((uint32_t)(g * 1000) + 128) / 256;
  422. val_b = ((uint32_t)(b * 1000) + 128) / 256;
  423. COLOR_R((uint16_t)val_r);
  424. COLOR_G((uint16_t)val_g);
  425. COLOR_B((uint16_t)val_b);
  426. */
  427. }
  428. /**
  429. * @brief Обработка кнопок.
  430. * @param : None
  431. * @retval : None
  432. */
  433. static void btnProcess(void) {
  434. /* get pin state */
  435. uint32_t pins = BTNS_STATE;
  436. int i;
  437. for (i=0; i<BTN_NUM; i++) {
  438. if ((pins & Button[i].pin) == 0) {
  439. /* button pressed */
  440. Button[i].time ++;
  441. if (Button[i].time >= (BTN_TIME_HOLDED/BTN_SCAN_PERIOD)) {
  442. Button[i].time -= (BTN_TIME_REPEATED/BTN_SCAN_PERIOD);
  443. if (Button[i].holded == Button[i].pressed) {
  444. /* if pressed and holded - same function, then button pressed auto repeat */
  445. ES_PlaceEvent(Button[i].pressed);
  446. }
  447. }
  448. } else if (Button[i].time != 0) {
  449. /* button released */
  450. if (Button[i].time >= ((BTN_TIME_HOLDED - BTN_TIME_REPEATED)/BTN_SCAN_PERIOD)) {
  451. /* process long press */
  452. ES_PlaceEvent(Button[i].holded);
  453. } else if (Button[i].time >= (BTN_TIME_PRESSED/BTN_SCAN_PERIOD)) {
  454. /* process short press */
  455. ES_PlaceEvent(Button[i].pressed);
  456. }
  457. Button[i].time = 0;
  458. RTOS_SetTask(btnProcess, BTN_SCAN_PAUSE, BTN_SCAN_PERIOD);
  459. }
  460. } /* end FOR */
  461. }
  462. /**
  463. * On/off symbols on IN-15 tube.
  464. */
  465. void in15Off(void) {
  466. IN15_OFF;
  467. TUBE_C_OFF;
  468. }
  469. void in15Minus(void) {
  470. IN15_OFF;
  471. IN15_Minus;
  472. TUBE_C_ON;
  473. }
  474. void in15Plus(void) {
  475. IN15_OFF;
  476. IN15_Plus;
  477. TUBE_C_ON;
  478. }
  479. void in15Percent(void) {
  480. IN15_OFF;
  481. IN15_Percent;
  482. TUBE_C_ON;
  483. }
  484. void in15P(void) {
  485. IN15_OFF;
  486. IN15_P;
  487. TUBE_C_ON;
  488. }
  489. void showTime(void) {
  490. in15Minus();
  491. RTOS_SetTask(in15Off, 500, 0);
  492. uint8_t buf[4];
  493. buf[Tube_A] = Clock.Hr >> 4;
  494. buf[Tube_B] = Clock.Hr & 0xf;
  495. buf[Tube_D] = Clock.Min >> 4;
  496. buf[Tube_E] = Clock.Min & 0xf;
  497. showDigits(buf);
  498. }
  499. /**
  500. * Show info on tubes.
  501. */
  502. void showWD(void) {
  503. dispWDT = DISP_WDT_TIME;
  504. IN15_OFF;
  505. uint8_t buf[4];
  506. buf[Tube_A] = 0xf;
  507. buf[Tube_B] = Clock.WD & 0xf;
  508. buf[Tube_D] = 0xf;
  509. buf[Tube_E] = 0xf;
  510. showDigits(buf);
  511. }
  512. void showDay(void) {
  513. dispWDT = DISP_WDT_TIME;
  514. IN15_OFF;
  515. uint8_t buf[4];
  516. buf[Tube_A] = Clock.Day >> 4;
  517. buf[Tube_B] = Clock.Day & 0xf;
  518. buf[Tube_D] = 0xf;
  519. buf[Tube_E] = 0xf;
  520. showDigits(buf);
  521. }
  522. void showMonth(void) {
  523. dispWDT = DISP_WDT_TIME;
  524. IN15_OFF;
  525. uint8_t buf[4];
  526. buf[Tube_A] = 0xf;
  527. buf[Tube_B] = 0xf;
  528. buf[Tube_D] = Clock.Mon >> 4;
  529. buf[Tube_E] = Clock.Mon & 0xf;
  530. showDigits(buf);
  531. }
  532. void showDayMon(void) {
  533. dispWDT = DISP_WDT_TIME;
  534. IN15_OFF;
  535. uint8_t buf[4];
  536. buf[Tube_A] = Clock.Day >> 4;
  537. buf[Tube_B] = Clock.Day & 0xf;
  538. buf[Tube_D] = Clock.Mon >> 4;
  539. buf[Tube_E] = Clock.Mon & 0xf;
  540. showDigits(buf);
  541. }
  542. void showYear(void) {
  543. dispWDT = DISP_WDT_TIME;
  544. IN15_OFF;
  545. uint8_t buf[4];
  546. buf[Tube_A] = 2;
  547. buf[Tube_B] = 0;
  548. buf[Tube_D] = Clock.Year >> 4;
  549. buf[Tube_E] = Clock.Year & 0xf;
  550. showDigits(buf);
  551. }
  552. void showHumidity(void) {
  553. dispWDT = DISP_WDT_TIME;
  554. in15Percent();
  555. uint8_t buf[4];
  556. buf[Tube_A] = Humidity / 10;
  557. buf[Tube_B] = Humidity % 10;
  558. buf[Tube_D] = 0xf;
  559. buf[Tube_E] = 0xf;
  560. showDigits(buf);
  561. }
  562. void showTemperature(void) {
  563. dispWDT = DISP_WDT_TIME;
  564. in15Plus();
  565. uint8_t buf[4];
  566. buf[Tube_A] = 0xf;
  567. buf[Tube_B] = 0xf;
  568. buf[Tube_D] = Temperature / 10;
  569. buf[Tube_E] = Temperature % 10;
  570. showDigits(buf);
  571. }
  572. void showPressure(void) {
  573. dispWDT = DISP_WDT_TIME;
  574. in15P();
  575. uint8_t buf[4];
  576. buf[Tube_A] = 0xf;
  577. buf[Tube_B] = Pressure.s16.u8H & 0xf;
  578. buf[Tube_D] = Pressure.s16.u8L >> 4;
  579. buf[Tube_E] = Pressure.s16.u8L & 0xf;
  580. showDigits(buf);
  581. }
  582. /* Simple function for cyclic show all sensor data */
  583. void showSensorData(void) {
  584. ES_SetState(stShowSensorData);
  585. showTemperature();
  586. tdelay_ms(3000);
  587. showHumidity();
  588. tdelay_ms(3000);
  589. showPressure();
  590. tdelay_ms(3000);
  591. ES_SetState(stShowTime);
  592. showTime();
  593. }
  594. /* USER CODE END 4 */
  595. /**
  596. * @brief This function is executed in case of error occurrence.
  597. * @retval None
  598. */
  599. void Error_Handler(void)
  600. {
  601. /* USER CODE BEGIN Error_Handler_Debug */
  602. /* User can add his own implementation to report the HAL error return state */
  603. __disable_irq();
  604. while (1)
  605. {
  606. }
  607. /* USER CODE END Error_Handler_Debug */
  608. }
  609. #ifdef USE_FULL_ASSERT
  610. /**
  611. * @brief Reports the name of the source file and the source line number
  612. * where the assert_param error has occurred.
  613. * @param file: pointer to the source file name
  614. * @param line: assert_param error line source number
  615. * @retval None
  616. */
  617. void assert_failed(uint8_t *file, uint32_t line)
  618. {
  619. /* USER CODE BEGIN 6 */
  620. /* User can add his own implementation to report the file name and line number,
  621. ex: printf("Wrong parameters value: file %s on line %d\r\n", file, line) */
  622. /* USER CODE END 6 */
  623. }
  624. #endif /* USE_FULL_ASSERT */
  625. /************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/