/* USER CODE BEGIN Header */
/**
  ******************************************************************************
  * @file           : main.c
  * @brief          : Main program body
  ******************************************************************************
  * @attention
  *
  * <h2><center>&copy; Copyright (c) 2021 STMicroelectronics.
  * All rights reserved.</center></h2>
  *
  * This software component is licensed by ST under BSD 3-Clause license,
  * the "License"; You may not use this file except in compliance with the
  * License. You may obtain a copy of the License at:
  *                        opensource.org/licenses/BSD-3-Clause
  *
  ******************************************************************************
  */
/* USER CODE END Header */
/* Includes ------------------------------------------------------------------*/
#include "main.h"

/* Private includes ----------------------------------------------------------*/
/* USER CODE BEGIN Includes */

/* USER CODE END Includes */

/* Private typedef -----------------------------------------------------------*/
/* USER CODE BEGIN PTD */
typedef enum {
  Tube_A = 3,
  Tube_B = 2,
  Tube_D = 1,
  Tube_E = 0
} tube_pos_t;
/* USER CODE END PTD */

/* Private define ------------------------------------------------------------*/
/* USER CODE BEGIN PD */
#define SPI_BUFFER_SIZE 5
/* Display timeout, sec */
#define DISP_WDT_TIME   10

/* USER CODE END PD */

/* Private macro -------------------------------------------------------------*/
/* USER CODE BEGIN PM */
/* USER CODE END PM */

/* Private variables ---------------------------------------------------------*/

/* USER CODE BEGIN PV */
static LL_RCC_ClocksTypeDef rcc_clocks;
/**
 * Nixi Tube cathodes map in Byte Array:
 * {E0 E9 E8 E7 E6 E5 E4 E3}
 * {E2 E1 D0 D9 D8 D7 D6 D5}
 * {D4 D3 D2 D1 B0 B9 B8 B7}
 * {B6 B5 B4 B3 B2 B1 A0 A9}
 * {A8 A7 A6 A5 A4 A3 A2 A1}
 *
 * Shift register bit map in Tube cathodes (from 0 to 1):
 * {5.7 5.6 5.5 5.4 5.3 5.2 5.1 5.0 4.7 4.6} VL5/E
 * {4.5 4.4 4.3 4.2 4.1 4.0 3.7 3.6 3.5 3.4} VL4/D
 * {3.3 3.2 3.1 3.0 2.7 2.6 2.5 2.4 2.3 2.2} VL2/B
 * {2.1 2.0 1.7 1.6 1.5 1.4 1.3 1.2 1.1 1.0} VL1/A
 */
static const uint16_t nixieCathodeMap[4][10] = {
  {0x8000, 0x0040, 0x0080, 0x0100, 0x0200, 0x0400, 0x0800, 0x1000, 0x2000, 0x4000},
  {0x2000, 0x0010, 0x0020, 0x0040, 0x0080, 0x0100, 0x0200, 0x0400, 0x0800, 0x1000},
  {0x0800, 0x0004, 0x0008, 0x0010, 0x0020, 0x0040, 0x0080, 0x0100, 0x0200, 0x0400},
  {0x0200, 0x0001, 0x0002, 0x0004, 0x0008, 0x0010, 0x0020, 0x0040, 0x0080, 0x0100}
};
static const uint8_t nixieCathodeMask[4][2] = {{0x00, 0x3f}, {0xc0, 0x0f}, {0xf0, 0x03}, {0xc0, 0x00}};
static uint8_t tubesBuffer[SPI_BUFFER_SIZE] = {0};
static rtc_t Clock;
static struct bme280_dev SensorDev;
static struct bme280_data SensorData;
static int8_t Humidity, Temperature;
static nt16_t Pressure;
static btn_t Button[BTN_NUM] = {
  {0, evBTN1Pressed, evBTN1Holded,  BTN1_PIN},
  {0, evBTN2Pressed, evBTN2Pressed, BTN2_PIN},
  {0, evBTN3Pressed, evBTN3Pressed, BTN3_PIN},
  {0, evBTN4Pressed, evBTN4Holded,  BTN4_PIN}
};
static volatile uint8_t dispWDT = 0;

/* USER CODE END PV */

/* Private function prototypes -----------------------------------------------*/
void SystemClock_Config(void);
static void MX_GPIO_Init(void);
static void MX_DMA_Init(void);
static void MX_I2C1_Init(void);
static void MX_SPI1_Init(void);
static void MX_TIM3_Init(void);
static void MX_TIM14_Init(void);
static void MX_TIM16_Init(void);
static void MX_TIM17_Init(void);
/* USER CODE BEGIN PFP */
static void showDigit(tube_pos_t pos, uint8_t dig);
static void tubes_Refresh(void);
int8_t user_i2c_read(uint8_t id, uint8_t reg_addr, uint8_t *data, uint16_t len);
int8_t user_i2c_write(uint8_t id, uint8_t reg_addr, uint8_t *data, uint16_t len);
int8_t i2c_check_err(void);
static void sensorStartMeasure(void);
static void sensorGetData(void);
static void btnProcess(void);
/* USER CODE END PFP */

/* Private user code ---------------------------------------------------------*/
/* USER CODE BEGIN 0 */

/* USER CODE END 0 */

/**
  * @brief  The application entry point.
  * @retval int
  */
int main(void)
{
  /* USER CODE BEGIN 1 */

  /* USER CODE END 1 */

  /* MCU Configuration--------------------------------------------------------*/

  /* Reset of all peripherals, Initializes the Flash interface and the Systick. */

  LL_APB2_GRP1_EnableClock(LL_APB2_GRP1_PERIPH_SYSCFG);
  LL_APB1_GRP1_EnableClock(LL_APB1_GRP1_PERIPH_PWR);

  /* System interrupt init*/

  /* Peripheral interrupt init*/
  /* RCC_IRQn interrupt configuration */
  NVIC_SetPriority(RCC_IRQn, 0);
  NVIC_EnableIRQ(RCC_IRQn);

  /* USER CODE BEGIN Init */

  /* USER CODE END Init */

  /* Configure the system clock */
  SystemClock_Config();

  /* USER CODE BEGIN SysInit */
  LL_LPM_EnableSleep();
  LL_LPM_DisableSleepOnExit();
  LL_RCC_GetSystemClocksFreq(&rcc_clocks);
  /* USER CODE END SysInit */

  /* Initialize all configured peripherals */
  MX_GPIO_Init();
  MX_DMA_Init();
  MX_I2C1_Init();
  MX_SPI1_Init();
  MX_TIM3_Init();
  MX_TIM14_Init();
  MX_TIM16_Init();
  MX_TIM17_Init();
  /* USER CODE BEGIN 2 */
  RTOS_Init();

  /* Initialize Event State Machine */
  ES_Init(stShowTime);

  /* Start RGB PWM */
  LL_TIM_CC_EnableChannel(TIM3, LL_TIM_CHANNEL_CH1);
  LL_TIM_CC_EnableChannel(TIM3, LL_TIM_CHANNEL_CH2);
  LL_TIM_CC_EnableChannel(TIM3, LL_TIM_CHANNEL_CH3);
  LL_TIM_EnableCounter(TIM3);

  /* Start Tube PWR PWM */
  LL_TIM_CC_EnableChannel(TIM14, LL_TIM_CHANNEL_CH1);
  LL_TIM_EnableCounter(TIM14);

  /* Enable tube power */
  TUBE_PWR_ON;

  /* Set DMA source and destination addresses. */
  /* Source: Address of the SPI buffer. */
  DMA1_Channel1->CMAR = (uint32_t)&tubesBuffer;
  /* Destination: SPI1 data register. */
  DMA1_Channel1->CPAR = (uint32_t)&(SPI1->DR);
  /* Set DMA data transfer length (SPI buffer length). */
  DMA1_Channel1->CNDTR = SPI_BUFFER_SIZE;

  /* Enable SPI+DMA transfer */
  SPI1->CR2 |= SPI_CR2_TXDMAEN;
  SPI1->CR1 |= SPI_CR1_SPE;

  tubes_Refresh();

  IN15_OFF;

  RTC_Init();

  int8_t rsltSensor;
  SensorDev.dev_id = (BME280_I2C_ADDR_PRIM << 1);
  SensorDev.intf = BME280_I2C_INTF;
  SensorDev.read = user_i2c_read;
  SensorDev.write = user_i2c_write;
  SensorDev.delay_ms = tdelay_ms;
  rsltSensor = bme280_init(&SensorDev);
  if (rsltSensor == BME280_OK) {
    Flag.BME280 = 1;
  }

  /* Set tasks for Sheduler */
  RTOS_SetTask(btnProcess, 1, BTN_SCAN_PERIOD);
  /* USER CODE END 2 */

  /* USER CODE BEGIN WHILE */
  RTC_ReadAll(&Clock);

  if (Flag.BME280 != 0) {
    /* BME280 Recommended mode of operation: Indoor navigation */
    SensorDev.settings.osr_h = BME280_OVERSAMPLING_1X;
    SensorDev.settings.osr_p = BME280_OVERSAMPLING_16X;
    SensorDev.settings.osr_t = BME280_OVERSAMPLING_2X;
    SensorDev.settings.filter = BME280_FILTER_COEFF_16;
    rsltSensor = bme280_set_sensor_settings((BME280_OSR_PRESS_SEL | BME280_OSR_TEMP_SEL | BME280_OSR_HUM_SEL | BME280_FILTER_SEL), &SensorDev);
    RTOS_SetTask(sensorStartMeasure, 103, 1000);
    RTOS_SetTask(sensorGetData, 603, 1000);
  }

  es_event_t event = eventNull;
  COLOR_RGB(0xFF, 0x12, 0x0); // Nixie color. FF7E00 or FFBF00
  showTime();

  /* Infinite loop */
  while (1)
  {
    /* new second interrupt from RTC */
    if (Flag.RTC_IRQ != 0) {
      Flag.RTC_IRQ = 0;

      RTC_ReadAll(&Clock);

      ES_PlaceEvent(evNewSecond);

      if (dispWDT != 0) {
        dispWDT --;
        if (dispWDT == 0) {
          ES_PlaceEvent(evDisplayWDT);
        }
      }

    } /* end of New second */

    /* USER CODE END WHILE */

    /* USER CODE BEGIN 3 */
    event = ES_GetEvent();
    if (event) {
      ES_Dispatch(event);
    }

    RTOS_DispatchTask();

    __WFI();
  }
  /* USER CODE END 3 */
}


/**
 * @brief Launch SPI transaction.
 * @retval None
 */
static void tubes_Refresh(void) {
  LL_DMA_EnableChannel(DMA1, LL_DMA_CHANNEL_1);
}

/**
 * @brief Check I2C fjr errors.
 * @retval I2C return code
 */
int8_t i2c_check_err(void) {
  int8_t r = I2C_RET_OK;

  if ((I2C1->ISR & I2C_ISR_NACKF) != 0) {
  /* device not present */
    r = I2C_RET_NACK;
  } else if ((I2C1->ISR & (I2C_ISR_ARLO | I2C_ISR_BERR)) != 0) {
  /* other error */
    r = I2C_RET_ERR;
  }

  if (r != I2C_RET_OK) {
  /* restart I2C and clear flags */
    I2C1->CR1 &= ~I2C_CR1_PE;
    while ((I2C1->CR1 & I2C_CR1_PE) != 0) {};
    I2C1->CR1 |= I2C_CR1_PE;
  }

  return r;
}

/**
 * @brief Read len bytes from I2C bus to data by reg_addr.
 * @retval I2C return code
 */
int8_t user_i2c_read(const uint8_t id, const uint8_t reg_addr, uint8_t *data, const uint16_t len) {
  int8_t r = I2C_RET_OK;

  Flag.I2C_RX_End = 0;
  Flag.I2C_RX_Err = 0;
  Flag.I2C_TX_Err = 0;

  /* wait for i2c */
  while ( I2C1->ISR & I2C_ISR_BUSY ) { __NOP(); };

  /* prepare i2c for sending reg addr */
  I2C1->CR2 &= ~( I2C_CR2_SADD | I2C_CR2_NBYTES | I2C_CR2_RD_WRN);
  I2C1->CR2 |= ( id | 1 << I2C_CR2_NBYTES_Pos );
  /* gen START */
  I2C1->CR2 |= ( I2C_CR2_START );

  /* wait for byte request or any error */
  while ((I2C1->ISR & (I2C_ISR_ARLO | I2C_ISR_BERR | I2C_ISR_NACKF | I2C_ISR_TXE)) == 0) { __NOP(); };

  if ((I2C2->ISR & I2C_ISR_TXE) != 0) {
  /* device ok, send reg addr */
    I2C1->TXDR = reg_addr;
  } else {
    r = i2c_check_err();
    if (r != I2C_RET_OK) {
      Flag.I2C_TX_Err = 1;
      return r;
    }
  }

  /* wait for i2c or any error */
  while (((I2C1->ISR & I2C_ISR_BUSY) != 0) && ((I2C1->ISR & (I2C_ISR_ARLO | I2C_ISR_BERR | I2C_ISR_NACKF)) == 0)) { __NOP(); };
  r = i2c_check_err();
  if (r != I2C_RET_OK) {
    Flag.I2C_TX_Err = 1;
    return r;
  }

  /* prepare dma channel for receiving data */
  DMA1_Channel2->CMAR = (uint32_t)data;
  DMA1_Channel2->CPAR = (uint32_t)&(I2C1->RXDR);
  DMA1_Channel2->CNDTR = len;
  DMA1_Channel2->CCR |= DMA_CCR_EN;

  /* prepare i2c for receiving data */
  I2C1->CR2 &= ~( I2C_CR2_SADD | I2C_CR2_NBYTES | I2C_CR2_RD_WRN);
  I2C1->CR2 |= ( id | len << I2C_CR2_NBYTES_Pos | I2C_CR2_RD_WRN);
  /* launch receiving */
  I2C1->CR1 |= ( I2C_CR1_RXDMAEN );
  I2C1->CR2 |= ( I2C_CR2_START );

  /* wait for receiving data */
  while ((Flag.I2C_RX_End == 0) && (Flag.I2C_RX_Err == 0)) { __NOP(); };

  return r;
}

/**
 * @brief Write len bytes to I2C bus from data by reg_addr.
 * @retval I2C return code
 */
int8_t user_i2c_write(const uint8_t id, const uint8_t reg_addr, uint8_t *data, const uint16_t len) {
  int8_t r = I2C_RET_OK;

  Flag.I2C_TX_End = 0;
  Flag.I2C_TX_Err = 0;

  DMA1_Channel3->CMAR = (uint32_t)data;
  DMA1_Channel3->CPAR = (uint32_t)&(I2C1->TXDR);
  DMA1_Channel3->CNDTR = len;

  while ( I2C1->ISR & I2C_ISR_BUSY ) {};

  I2C1->CR2 &= ~( I2C_CR2_SADD | I2C_CR2_NBYTES | I2C_CR2_RD_WRN);
  I2C1->CR2 |= ( id | (len + 1) << I2C_CR2_NBYTES_Pos );
  I2C1->CR2 |= ( I2C_CR2_START );

  while ((I2C1->ISR & (I2C_ISR_ARLO | I2C_ISR_BERR | I2C_ISR_NACKF | I2C_ISR_TXE)) == 0) { __NOP(); };
  if ((I2C2->ISR & I2C_ISR_TXE) != 0) {
    I2C1->TXDR = reg_addr;
  } else {
    r = i2c_check_err();
    if (r != I2C_RET_OK) {
      Flag.I2C_TX_Err = 1;
      return r;
    }
  }

  DMA1_Channel3->CCR |= DMA_CCR_EN;
  I2C1->CR1 |= ( I2C_CR1_TXDMAEN );

  return r;
}

/**
  * Sensor
  */
static void sensorStartMeasure(void) {
  bme280_set_sensor_mode(BME280_FORCED_MODE, &SensorDev);
}

static void sensorGetData(void) {
  bme280_get_sensor_data(BME280_ALL, &SensorData, &SensorDev);

  int32_t tmp;

  tmp = SensorData.humidity + 512;
  Humidity = (int8_t)(tmp / 1024);

  tmp = SensorData.temperature + 50;
  Temperature = (int8_t)(tmp / 100);

  /* in 32-bit arithmetics pressure in Pa */
  tmp = SensorData.pressure * 1000;
  tmp += 66661;
  tmp /= 133322;
  /* pressure in mmHg */
  Pressure.s16.u8H = (uint8_t)(tmp / 100);
  Pressure.s16.u8L = (uint8_t)(tmp % 100);
}

/**
  * @brief System Clock Configuration
  * @retval None
  */
void SystemClock_Config(void)
{
  /* HSI configuration and activation */
  LL_RCC_HSI_Enable();
  while(LL_RCC_HSI_IsReady() != 1)
  {
  }

  /* Main PLL configuration and activation */
  LL_RCC_PLL_ConfigDomain_SYS(LL_RCC_PLLSOURCE_HSI, LL_RCC_PLLM_DIV_2, 9, LL_RCC_PLLR_DIV_3);
  LL_RCC_PLL_Enable();
  LL_RCC_PLL_EnableDomain_SYS();
  while(LL_RCC_PLL_IsReady() != 1)
  {
  }

  /* Set AHB prescaler*/
  LL_RCC_SetAHBPrescaler(LL_RCC_SYSCLK_DIV_1);

  /* Sysclk activation on the main PLL */
  LL_RCC_SetSysClkSource(LL_RCC_SYS_CLKSOURCE_PLL);
  while(LL_RCC_GetSysClkSource() != LL_RCC_SYS_CLKSOURCE_STATUS_PLL)
  {
  }

  /* Set APB1 prescaler*/
  LL_RCC_SetAPB1Prescaler(LL_RCC_APB1_DIV_1);

  LL_Init1msTick(24000000);

  /* Update CMSIS variable (which can be updated also through SystemCoreClockUpdate function) */
  LL_SetSystemCoreClock(24000000);
  LL_RCC_SetI2CClockSource(LL_RCC_I2C1_CLKSOURCE_HSI);
}

/**
  * @brief I2C1 Initialization Function
  * @param None
  * @retval None
  */
static void MX_I2C1_Init(void)
{

  /* USER CODE BEGIN I2C1_Init 0 */

  /* USER CODE END I2C1_Init 0 */

  LL_I2C_InitTypeDef I2C_InitStruct = {0};

  LL_GPIO_InitTypeDef GPIO_InitStruct = {0};

  LL_IOP_GRP1_EnableClock(LL_IOP_GRP1_PERIPH_GPIOB);
  /**I2C1 GPIO Configuration
  PB8   ------> I2C1_SCL
  PB9   ------> I2C1_SDA
  */
  GPIO_InitStruct.Pin = LL_GPIO_PIN_8;
  GPIO_InitStruct.Mode = LL_GPIO_MODE_ALTERNATE;
  GPIO_InitStruct.Speed = LL_GPIO_SPEED_FREQ_HIGH;
  GPIO_InitStruct.OutputType = LL_GPIO_OUTPUT_OPENDRAIN;
  GPIO_InitStruct.Pull = LL_GPIO_PULL_UP;
  GPIO_InitStruct.Alternate = LL_GPIO_AF_6;
  LL_GPIO_Init(GPIOB, &GPIO_InitStruct);

  GPIO_InitStruct.Pin = LL_GPIO_PIN_9;
  GPIO_InitStruct.Mode = LL_GPIO_MODE_ALTERNATE;
  GPIO_InitStruct.Speed = LL_GPIO_SPEED_FREQ_HIGH;
  GPIO_InitStruct.OutputType = LL_GPIO_OUTPUT_OPENDRAIN;
  GPIO_InitStruct.Pull = LL_GPIO_PULL_UP;
  GPIO_InitStruct.Alternate = LL_GPIO_AF_6;
  LL_GPIO_Init(GPIOB, &GPIO_InitStruct);

  /* Peripheral clock enable */
  LL_APB1_GRP1_EnableClock(LL_APB1_GRP1_PERIPH_I2C1);

  /* I2C1 DMA Init */

  /* I2C1_RX Init */
  LL_DMA_SetPeriphRequest(DMA1, LL_DMA_CHANNEL_2, LL_DMAMUX_REQ_I2C1_RX);

  LL_DMA_SetDataTransferDirection(DMA1, LL_DMA_CHANNEL_2, LL_DMA_DIRECTION_PERIPH_TO_MEMORY);

  LL_DMA_SetChannelPriorityLevel(DMA1, LL_DMA_CHANNEL_2, LL_DMA_PRIORITY_MEDIUM);

  LL_DMA_SetPeriphIncMode(DMA1, LL_DMA_CHANNEL_2, LL_DMA_PERIPH_NOINCREMENT);

  LL_DMA_SetMemoryIncMode(DMA1, LL_DMA_CHANNEL_2, LL_DMA_MEMORY_INCREMENT);

  LL_DMA_SetPeriphSize(DMA1, LL_DMA_CHANNEL_2, LL_DMA_PDATAALIGN_BYTE);

  LL_DMA_SetMemorySize(DMA1, LL_DMA_CHANNEL_2, LL_DMA_MDATAALIGN_BYTE);

  /* I2C1_TX Init */
  LL_DMA_SetPeriphRequest(DMA1, LL_DMA_CHANNEL_3, LL_DMAMUX_REQ_I2C1_TX);

  LL_DMA_SetDataTransferDirection(DMA1, LL_DMA_CHANNEL_3, LL_DMA_DIRECTION_MEMORY_TO_PERIPH);

  LL_DMA_SetChannelPriorityLevel(DMA1, LL_DMA_CHANNEL_3, LL_DMA_PRIORITY_MEDIUM);

  LL_DMA_SetPeriphIncMode(DMA1, LL_DMA_CHANNEL_3, LL_DMA_PERIPH_NOINCREMENT);

  LL_DMA_SetMemoryIncMode(DMA1, LL_DMA_CHANNEL_3, LL_DMA_MEMORY_INCREMENT);

  LL_DMA_SetPeriphSize(DMA1, LL_DMA_CHANNEL_3, LL_DMA_PDATAALIGN_BYTE);

  LL_DMA_SetMemorySize(DMA1, LL_DMA_CHANNEL_3, LL_DMA_MDATAALIGN_BYTE);

  /* I2C1 interrupt Init */

  /* USER CODE BEGIN I2C1_Init 1 */
  /* Enable DMA transfer complete/error interrupts */
  LL_DMA_EnableIT_TC(DMA1, LL_DMA_CHANNEL_2);
  LL_DMA_EnableIT_TE(DMA1, LL_DMA_CHANNEL_2);
  LL_DMA_EnableIT_TC(DMA1, LL_DMA_CHANNEL_3);
  LL_DMA_EnableIT_TE(DMA1, LL_DMA_CHANNEL_3);

  /* USER CODE END I2C1_Init 1 */
  /** I2C Initialization
  */
  I2C_InitStruct.PeripheralMode = LL_I2C_MODE_I2C;
  I2C_InitStruct.Timing = 0x0010061A;
  I2C_InitStruct.AnalogFilter = LL_I2C_ANALOGFILTER_ENABLE;
  I2C_InitStruct.DigitalFilter = 0;
  I2C_InitStruct.OwnAddress1 = 0;
  I2C_InitStruct.TypeAcknowledge = LL_I2C_ACK;
  I2C_InitStruct.OwnAddrSize = LL_I2C_OWNADDRESS1_7BIT;
  LL_I2C_EnableAutoEndMode(I2C1);
  LL_I2C_SetOwnAddress2(I2C1, 0, LL_I2C_OWNADDRESS2_NOMASK);
  LL_I2C_DisableOwnAddress2(I2C1);
  LL_I2C_DisableGeneralCall(I2C1);
  LL_I2C_DisableClockStretching(I2C1);
  LL_I2C_Init(I2C1, &I2C_InitStruct);
  /* USER CODE BEGIN I2C1_Init 2 */

  /* USER CODE END I2C1_Init 2 */

}

/**
  * @brief SPI1 Initialization Function
  * @param None
  * @retval None
  */
static void MX_SPI1_Init(void)
{

  /* USER CODE BEGIN SPI1_Init 0 */

  /* USER CODE END SPI1_Init 0 */

  LL_SPI_InitTypeDef SPI_InitStruct = {0};

  LL_GPIO_InitTypeDef GPIO_InitStruct = {0};

  /* Peripheral clock enable */
  LL_APB2_GRP1_EnableClock(LL_APB2_GRP1_PERIPH_SPI1);

  LL_IOP_GRP1_EnableClock(LL_IOP_GRP1_PERIPH_GPIOB);
  /**SPI1 GPIO Configuration
  PB3   ------> SPI1_SCK
  PB5   ------> SPI1_MOSI
  */
  GPIO_InitStruct.Pin = LL_GPIO_PIN_3;
  GPIO_InitStruct.Mode = LL_GPIO_MODE_ALTERNATE;
  GPIO_InitStruct.Speed = LL_GPIO_SPEED_FREQ_HIGH;
  GPIO_InitStruct.OutputType = LL_GPIO_OUTPUT_OPENDRAIN;
  GPIO_InitStruct.Pull = LL_GPIO_PULL_NO;
  GPIO_InitStruct.Alternate = LL_GPIO_AF_0;
  LL_GPIO_Init(GPIOB, &GPIO_InitStruct);

  GPIO_InitStruct.Pin = LL_GPIO_PIN_5;
  GPIO_InitStruct.Mode = LL_GPIO_MODE_ALTERNATE;
  GPIO_InitStruct.Speed = LL_GPIO_SPEED_FREQ_HIGH;
  GPIO_InitStruct.OutputType = LL_GPIO_OUTPUT_OPENDRAIN;
  GPIO_InitStruct.Pull = LL_GPIO_PULL_NO;
  GPIO_InitStruct.Alternate = LL_GPIO_AF_0;
  LL_GPIO_Init(GPIOB, &GPIO_InitStruct);

  /* SPI1 DMA Init */

  /* SPI1_TX Init */
  LL_DMA_SetPeriphRequest(DMA1, LL_DMA_CHANNEL_1, LL_DMAMUX_REQ_SPI1_TX);

  LL_DMA_SetDataTransferDirection(DMA1, LL_DMA_CHANNEL_1, LL_DMA_DIRECTION_MEMORY_TO_PERIPH);

  LL_DMA_SetChannelPriorityLevel(DMA1, LL_DMA_CHANNEL_1, LL_DMA_PRIORITY_HIGH);

  LL_DMA_SetMode(DMA1, LL_DMA_CHANNEL_1, LL_DMA_MODE_CIRCULAR);

  LL_DMA_SetPeriphIncMode(DMA1, LL_DMA_CHANNEL_1, LL_DMA_PERIPH_NOINCREMENT);

  LL_DMA_SetMemoryIncMode(DMA1, LL_DMA_CHANNEL_1, LL_DMA_MEMORY_INCREMENT);

  LL_DMA_SetPeriphSize(DMA1, LL_DMA_CHANNEL_1, LL_DMA_PDATAALIGN_BYTE);

  LL_DMA_SetMemorySize(DMA1, LL_DMA_CHANNEL_1, LL_DMA_MDATAALIGN_BYTE);

  /* SPI1 interrupt Init */
  NVIC_SetPriority(SPI1_IRQn, 0);
  NVIC_EnableIRQ(SPI1_IRQn);

  /* USER CODE BEGIN SPI1_Init 1 */

  /* Enable DMA transfer complete/error interrupts */
  LL_DMA_EnableIT_TC(DMA1, LL_DMA_CHANNEL_1);
  LL_DMA_EnableIT_TE(DMA1, LL_DMA_CHANNEL_1);

  /* USER CODE END SPI1_Init 1 */
  /* SPI1 parameter configuration*/
  SPI_InitStruct.TransferDirection = LL_SPI_FULL_DUPLEX;
  SPI_InitStruct.Mode = LL_SPI_MODE_MASTER;
  SPI_InitStruct.DataWidth = LL_SPI_DATAWIDTH_8BIT;
  SPI_InitStruct.ClockPolarity = LL_SPI_POLARITY_LOW;
  SPI_InitStruct.ClockPhase = LL_SPI_PHASE_1EDGE;
  SPI_InitStruct.NSS = LL_SPI_NSS_SOFT;
  SPI_InitStruct.BaudRate = LL_SPI_BAUDRATEPRESCALER_DIV16;
  SPI_InitStruct.BitOrder = LL_SPI_MSB_FIRST;
  SPI_InitStruct.CRCCalculation = LL_SPI_CRCCALCULATION_DISABLE;
  SPI_InitStruct.CRCPoly = 7;
  LL_SPI_Init(SPI1, &SPI_InitStruct);
  LL_SPI_SetStandard(SPI1, LL_SPI_PROTOCOL_MOTOROLA);
  LL_SPI_DisableNSSPulseMgt(SPI1);
  /* USER CODE BEGIN SPI1_Init 2 */

  /* USER CODE END SPI1_Init 2 */

}

/**
  * @brief TIM3 Initialization Function
  * @param None
  * @retval None
  */
static void MX_TIM3_Init(void)
{

  /* USER CODE BEGIN TIM3_Init 0 */

  /* USER CODE END TIM3_Init 0 */

  LL_TIM_InitTypeDef TIM_InitStruct = {0};
  LL_TIM_OC_InitTypeDef TIM_OC_InitStruct = {0};

  LL_GPIO_InitTypeDef GPIO_InitStruct = {0};

  /* Peripheral clock enable */
  LL_APB1_GRP1_EnableClock(LL_APB1_GRP1_PERIPH_TIM3);

  /* USER CODE BEGIN TIM3_Init 1 */

  /* USER CODE END TIM3_Init 1 */
  TIM_InitStruct.Prescaler = 94;
  TIM_InitStruct.CounterMode = LL_TIM_COUNTERMODE_UP;
  TIM_InitStruct.Autoreload = 255;
  TIM_InitStruct.ClockDivision = LL_TIM_CLOCKDIVISION_DIV1;
  LL_TIM_Init(TIM3, &TIM_InitStruct);
  LL_TIM_EnableARRPreload(TIM3);
  LL_TIM_OC_EnablePreload(TIM3, LL_TIM_CHANNEL_CH1);
  TIM_OC_InitStruct.OCMode = LL_TIM_OCMODE_PWM1;
  TIM_OC_InitStruct.OCState = LL_TIM_OCSTATE_DISABLE;
  TIM_OC_InitStruct.OCNState = LL_TIM_OCSTATE_DISABLE;
  TIM_OC_InitStruct.CompareValue = 25;
  TIM_OC_InitStruct.OCPolarity = LL_TIM_OCPOLARITY_HIGH;
  LL_TIM_OC_Init(TIM3, LL_TIM_CHANNEL_CH1, &TIM_OC_InitStruct);
  LL_TIM_OC_DisableFast(TIM3, LL_TIM_CHANNEL_CH1);
  LL_TIM_OC_EnablePreload(TIM3, LL_TIM_CHANNEL_CH2);
  TIM_OC_InitStruct.OCState = LL_TIM_OCSTATE_DISABLE;
  TIM_OC_InitStruct.OCNState = LL_TIM_OCSTATE_DISABLE;
  LL_TIM_OC_Init(TIM3, LL_TIM_CHANNEL_CH2, &TIM_OC_InitStruct);
  LL_TIM_OC_DisableFast(TIM3, LL_TIM_CHANNEL_CH2);
  LL_TIM_OC_EnablePreload(TIM3, LL_TIM_CHANNEL_CH3);
  TIM_OC_InitStruct.OCState = LL_TIM_OCSTATE_DISABLE;
  TIM_OC_InitStruct.OCNState = LL_TIM_OCSTATE_DISABLE;
  LL_TIM_OC_Init(TIM3, LL_TIM_CHANNEL_CH3, &TIM_OC_InitStruct);
  LL_TIM_OC_DisableFast(TIM3, LL_TIM_CHANNEL_CH3);
  LL_TIM_SetTriggerOutput(TIM3, LL_TIM_TRGO_RESET);
  LL_TIM_DisableMasterSlaveMode(TIM3);
  /* USER CODE BEGIN TIM3_Init 2 */

  /* USER CODE END TIM3_Init 2 */
  LL_IOP_GRP1_EnableClock(LL_IOP_GRP1_PERIPH_GPIOA);
  LL_IOP_GRP1_EnableClock(LL_IOP_GRP1_PERIPH_GPIOB);
  /**TIM3 GPIO Configuration
  PA6   ------> TIM3_CH1
  PA7   ------> TIM3_CH2
  PB0   ------> TIM3_CH3
  */
  GPIO_InitStruct.Pin = PWM_R_Pin;
  GPIO_InitStruct.Mode = LL_GPIO_MODE_ALTERNATE;
  GPIO_InitStruct.Speed = LL_GPIO_SPEED_FREQ_HIGH;
  GPIO_InitStruct.OutputType = LL_GPIO_OUTPUT_PUSHPULL;
  GPIO_InitStruct.Pull = LL_GPIO_PULL_DOWN;
  GPIO_InitStruct.Alternate = LL_GPIO_AF_1;
  LL_GPIO_Init(PWM_R_GPIO_Port, &GPIO_InitStruct);

  GPIO_InitStruct.Pin = PWM_G_Pin;
  GPIO_InitStruct.Mode = LL_GPIO_MODE_ALTERNATE;
  GPIO_InitStruct.Speed = LL_GPIO_SPEED_FREQ_HIGH;
  GPIO_InitStruct.OutputType = LL_GPIO_OUTPUT_PUSHPULL;
  GPIO_InitStruct.Pull = LL_GPIO_PULL_DOWN;
  GPIO_InitStruct.Alternate = LL_GPIO_AF_1;
  LL_GPIO_Init(PWM_G_GPIO_Port, &GPIO_InitStruct);

  GPIO_InitStruct.Pin = PWM_B_Pin;
  GPIO_InitStruct.Mode = LL_GPIO_MODE_ALTERNATE;
  GPIO_InitStruct.Speed = LL_GPIO_SPEED_FREQ_HIGH;
  GPIO_InitStruct.OutputType = LL_GPIO_OUTPUT_PUSHPULL;
  GPIO_InitStruct.Pull = LL_GPIO_PULL_DOWN;
  GPIO_InitStruct.Alternate = LL_GPIO_AF_1;
  LL_GPIO_Init(PWM_B_GPIO_Port, &GPIO_InitStruct);

}

/**
  * @brief TIM14 Initialization Function
  * @param None
  * @retval None
  */
static void MX_TIM14_Init(void)
{

  /* USER CODE BEGIN TIM14_Init 0 */

  /* USER CODE END TIM14_Init 0 */

  LL_TIM_InitTypeDef TIM_InitStruct = {0};
  LL_TIM_OC_InitTypeDef TIM_OC_InitStruct = {0};

  LL_GPIO_InitTypeDef GPIO_InitStruct = {0};

  /* Peripheral clock enable */
  LL_APB2_GRP1_EnableClock(LL_APB2_GRP1_PERIPH_TIM14);

  /* TIM14 interrupt Init */
  NVIC_SetPriority(TIM14_IRQn, 0);
  NVIC_EnableIRQ(TIM14_IRQn);

  /* USER CODE BEGIN TIM14_Init 1 */

  /* USER CODE END TIM14_Init 1 */
  TIM_InitStruct.Prescaler = 240;
  TIM_InitStruct.CounterMode = LL_TIM_COUNTERMODE_UP;
  TIM_InitStruct.Autoreload = 1000;
  TIM_InitStruct.ClockDivision = LL_TIM_CLOCKDIVISION_DIV1;
  LL_TIM_Init(TIM14, &TIM_InitStruct);
  LL_TIM_EnableARRPreload(TIM14);
  LL_TIM_OC_EnablePreload(TIM14, LL_TIM_CHANNEL_CH1);
  TIM_OC_InitStruct.OCMode = LL_TIM_OCMODE_PWM1;
  TIM_OC_InitStruct.OCState = LL_TIM_OCSTATE_DISABLE;
  TIM_OC_InitStruct.OCNState = LL_TIM_OCSTATE_DISABLE;
  TIM_OC_InitStruct.CompareValue = 750;
  TIM_OC_InitStruct.OCPolarity = LL_TIM_OCPOLARITY_HIGH;
  LL_TIM_OC_Init(TIM14, LL_TIM_CHANNEL_CH1, &TIM_OC_InitStruct);
  LL_TIM_OC_DisableFast(TIM14, LL_TIM_CHANNEL_CH1);
  /* USER CODE BEGIN TIM14_Init 2 */

  /* USER CODE END TIM14_Init 2 */
  LL_IOP_GRP1_EnableClock(LL_IOP_GRP1_PERIPH_GPIOB);
  /**TIM14 GPIO Configuration
  PB1   ------> TIM14_CH1
  */
  GPIO_InitStruct.Pin = PWM_T_Pin;
  GPIO_InitStruct.Mode = LL_GPIO_MODE_ALTERNATE;
  GPIO_InitStruct.Speed = LL_GPIO_SPEED_FREQ_HIGH;
  GPIO_InitStruct.OutputType = LL_GPIO_OUTPUT_PUSHPULL;
  GPIO_InitStruct.Pull = LL_GPIO_PULL_DOWN;
  GPIO_InitStruct.Alternate = LL_GPIO_AF_0;
  LL_GPIO_Init(PWM_T_GPIO_Port, &GPIO_InitStruct);

}

/**
  * @brief TIM16 Initialization Function
  * @param None
  * @retval None
  */
static void MX_TIM16_Init(void)
{

  /* USER CODE BEGIN TIM16_Init 0 */

  /* USER CODE END TIM16_Init 0 */

  LL_TIM_InitTypeDef TIM_InitStruct = {0};
  LL_TIM_OC_InitTypeDef TIM_OC_InitStruct = {0};
  LL_TIM_BDTR_InitTypeDef TIM_BDTRInitStruct = {0};

  /* Peripheral clock enable */
  LL_APB2_GRP1_EnableClock(LL_APB2_GRP1_PERIPH_TIM16);

  /* TIM16 interrupt Init */
  NVIC_SetPriority(TIM16_IRQn, 0);
  NVIC_EnableIRQ(TIM16_IRQn);

  /* USER CODE BEGIN TIM16_Init 1 */

  /* USER CODE END TIM16_Init 1 */
  TIM_InitStruct.Prescaler = 24;
  TIM_InitStruct.CounterMode = LL_TIM_COUNTERMODE_UP;
  TIM_InitStruct.Autoreload = 1000;
  TIM_InitStruct.ClockDivision = LL_TIM_CLOCKDIVISION_DIV1;
  TIM_InitStruct.RepetitionCounter = 0;
  LL_TIM_Init(TIM16, &TIM_InitStruct);
  LL_TIM_EnableARRPreload(TIM16);
  LL_TIM_OC_EnablePreload(TIM16, LL_TIM_CHANNEL_CH1);
  TIM_OC_InitStruct.OCMode = LL_TIM_OCMODE_PWM1;
  TIM_OC_InitStruct.OCState = LL_TIM_OCSTATE_DISABLE;
  TIM_OC_InitStruct.OCNState = LL_TIM_OCSTATE_DISABLE;
  TIM_OC_InitStruct.CompareValue = 0;
  TIM_OC_InitStruct.OCPolarity = LL_TIM_OCPOLARITY_HIGH;
  TIM_OC_InitStruct.OCNPolarity = LL_TIM_OCPOLARITY_HIGH;
  TIM_OC_InitStruct.OCIdleState = LL_TIM_OCIDLESTATE_LOW;
  TIM_OC_InitStruct.OCNIdleState = LL_TIM_OCIDLESTATE_LOW;
  LL_TIM_OC_Init(TIM16, LL_TIM_CHANNEL_CH1, &TIM_OC_InitStruct);
  LL_TIM_OC_DisableFast(TIM16, LL_TIM_CHANNEL_CH1);
  TIM_BDTRInitStruct.OSSRState = LL_TIM_OSSR_DISABLE;
  TIM_BDTRInitStruct.OSSIState = LL_TIM_OSSI_DISABLE;
  TIM_BDTRInitStruct.LockLevel = LL_TIM_LOCKLEVEL_OFF;
  TIM_BDTRInitStruct.DeadTime = 0;
  TIM_BDTRInitStruct.BreakState = LL_TIM_BREAK_DISABLE;
  TIM_BDTRInitStruct.BreakPolarity = LL_TIM_BREAK_POLARITY_HIGH;
  TIM_BDTRInitStruct.BreakFilter = LL_TIM_BREAK_FILTER_FDIV1;
  TIM_BDTRInitStruct.AutomaticOutput = LL_TIM_AUTOMATICOUTPUT_DISABLE;
  LL_TIM_BDTR_Init(TIM16, &TIM_BDTRInitStruct);
  /* USER CODE BEGIN TIM16_Init 2 */

  /* USER CODE END TIM16_Init 2 */

}

/**
  * @brief TIM17 Initialization Function
  * @param None
  * @retval None
  */
static void MX_TIM17_Init(void)
{

  /* USER CODE BEGIN TIM17_Init 0 */

  /* USER CODE END TIM17_Init 0 */

  LL_TIM_InitTypeDef TIM_InitStruct = {0};
  LL_TIM_OC_InitTypeDef TIM_OC_InitStruct = {0};
  LL_TIM_BDTR_InitTypeDef TIM_BDTRInitStruct = {0};

  /* Peripheral clock enable */
  LL_APB2_GRP1_EnableClock(LL_APB2_GRP1_PERIPH_TIM17);

  /* TIM17 interrupt Init */
  NVIC_SetPriority(TIM17_IRQn, 0);
  NVIC_EnableIRQ(TIM17_IRQn);

  /* USER CODE BEGIN TIM17_Init 1 */

  /* USER CODE END TIM17_Init 1 */
  TIM_InitStruct.Prescaler = 240;
  TIM_InitStruct.CounterMode = LL_TIM_COUNTERMODE_UP;
  TIM_InitStruct.Autoreload = 1000;
  TIM_InitStruct.ClockDivision = LL_TIM_CLOCKDIVISION_DIV1;
  TIM_InitStruct.RepetitionCounter = 100;
  LL_TIM_Init(TIM17, &TIM_InitStruct);
  LL_TIM_EnableARRPreload(TIM17);
  LL_TIM_OC_EnablePreload(TIM17, LL_TIM_CHANNEL_CH1);
  TIM_OC_InitStruct.OCMode = LL_TIM_OCMODE_PWM1;
  TIM_OC_InitStruct.OCState = LL_TIM_OCSTATE_DISABLE;
  TIM_OC_InitStruct.OCNState = LL_TIM_OCSTATE_DISABLE;
  TIM_OC_InitStruct.CompareValue = 0;
  TIM_OC_InitStruct.OCPolarity = LL_TIM_OCPOLARITY_HIGH;
  TIM_OC_InitStruct.OCNPolarity = LL_TIM_OCPOLARITY_HIGH;
  TIM_OC_InitStruct.OCIdleState = LL_TIM_OCIDLESTATE_LOW;
  TIM_OC_InitStruct.OCNIdleState = LL_TIM_OCIDLESTATE_LOW;
  LL_TIM_OC_Init(TIM17, LL_TIM_CHANNEL_CH1, &TIM_OC_InitStruct);
  LL_TIM_OC_DisableFast(TIM17, LL_TIM_CHANNEL_CH1);
  TIM_BDTRInitStruct.OSSRState = LL_TIM_OSSR_DISABLE;
  TIM_BDTRInitStruct.OSSIState = LL_TIM_OSSI_DISABLE;
  TIM_BDTRInitStruct.LockLevel = LL_TIM_LOCKLEVEL_OFF;
  TIM_BDTRInitStruct.DeadTime = 0;
  TIM_BDTRInitStruct.BreakState = LL_TIM_BREAK_DISABLE;
  TIM_BDTRInitStruct.BreakPolarity = LL_TIM_BREAK_POLARITY_HIGH;
  TIM_BDTRInitStruct.BreakFilter = LL_TIM_BREAK_FILTER_FDIV1;
  TIM_BDTRInitStruct.AutomaticOutput = LL_TIM_AUTOMATICOUTPUT_DISABLE;
  LL_TIM_BDTR_Init(TIM17, &TIM_BDTRInitStruct);
  /* USER CODE BEGIN TIM17_Init 2 */

  /* USER CODE END TIM17_Init 2 */

}

/**
  * Enable DMA controller clock
  */
static void MX_DMA_Init(void)
{

  /* Init with LL driver */
  /* DMA controller clock enable */
  LL_AHB1_GRP1_EnableClock(LL_AHB1_GRP1_PERIPH_DMA1);

  /* DMA interrupt init */
  /* DMA1_Channel1_IRQn interrupt configuration */
  NVIC_SetPriority(DMA1_Channel1_IRQn, 0);
  NVIC_EnableIRQ(DMA1_Channel1_IRQn);
  /* DMA1_Channel2_3_IRQn interrupt configuration */
  NVIC_SetPriority(DMA1_Channel2_3_IRQn, 0);
  NVIC_EnableIRQ(DMA1_Channel2_3_IRQn);

}

/**
  * @brief GPIO Initialization Function
  * @param None
  * @retval None
  */
static void MX_GPIO_Init(void)
{
  LL_EXTI_InitTypeDef EXTI_InitStruct = {0};
  LL_GPIO_InitTypeDef GPIO_InitStruct = {0};

  /* GPIO Ports Clock Enable */
  LL_IOP_GRP1_EnableClock(LL_IOP_GRP1_PERIPH_GPIOB);
  LL_IOP_GRP1_EnableClock(LL_IOP_GRP1_PERIPH_GPIOC);
  LL_IOP_GRP1_EnableClock(LL_IOP_GRP1_PERIPH_GPIOA);

  /**/
  LL_GPIO_ResetOutputPin(LC0_GPIO_Port, LC0_Pin);

  /**/
  LL_GPIO_ResetOutputPin(LC1_GPIO_Port, LC1_Pin);

  /**/
  LL_GPIO_ResetOutputPin(LC2_GPIO_Port, LC2_Pin);

  /**/
  LL_GPIO_ResetOutputPin(LC3_GPIO_Port, LC3_Pin);

  /**/
  LL_GPIO_ResetOutputPin(SHDN_GPIO_Port, SHDN_Pin);

  /**/
  LL_GPIO_ResetOutputPin(Latch_GPIO_Port, Latch_Pin);

  /**/
  GPIO_InitStruct.Pin = LL_GPIO_PIN_9;
  GPIO_InitStruct.Mode = LL_GPIO_MODE_ANALOG;
  GPIO_InitStruct.Pull = LL_GPIO_PULL_NO;
  LL_GPIO_Init(GPIOB, &GPIO_InitStruct);

  /**/
  GPIO_InitStruct.Pin = LL_GPIO_PIN_14;
  GPIO_InitStruct.Mode = LL_GPIO_MODE_ANALOG;
  GPIO_InitStruct.Pull = LL_GPIO_PULL_NO;
  LL_GPIO_Init(GPIOC, &GPIO_InitStruct);

  /**/
  GPIO_InitStruct.Pin = LL_GPIO_PIN_15;
  GPIO_InitStruct.Mode = LL_GPIO_MODE_ANALOG;
  GPIO_InitStruct.Pull = LL_GPIO_PULL_NO;
  LL_GPIO_Init(GPIOC, &GPIO_InitStruct);

  /**/
  GPIO_InitStruct.Pin = LC0_Pin;
  GPIO_InitStruct.Mode = LL_GPIO_MODE_OUTPUT;
  GPIO_InitStruct.Speed = LL_GPIO_SPEED_FREQ_HIGH;
  GPIO_InitStruct.OutputType = LL_GPIO_OUTPUT_PUSHPULL;
  GPIO_InitStruct.Pull = LL_GPIO_PULL_DOWN;
  LL_GPIO_Init(LC0_GPIO_Port, &GPIO_InitStruct);

  /**/
  GPIO_InitStruct.Pin = LC1_Pin;
  GPIO_InitStruct.Mode = LL_GPIO_MODE_OUTPUT;
  GPIO_InitStruct.Speed = LL_GPIO_SPEED_FREQ_HIGH;
  GPIO_InitStruct.OutputType = LL_GPIO_OUTPUT_PUSHPULL;
  GPIO_InitStruct.Pull = LL_GPIO_PULL_DOWN;
  LL_GPIO_Init(LC1_GPIO_Port, &GPIO_InitStruct);

  /**/
  GPIO_InitStruct.Pin = LC2_Pin;
  GPIO_InitStruct.Mode = LL_GPIO_MODE_OUTPUT;
  GPIO_InitStruct.Speed = LL_GPIO_SPEED_FREQ_HIGH;
  GPIO_InitStruct.OutputType = LL_GPIO_OUTPUT_PUSHPULL;
  GPIO_InitStruct.Pull = LL_GPIO_PULL_DOWN;
  LL_GPIO_Init(LC2_GPIO_Port, &GPIO_InitStruct);

  /**/
  GPIO_InitStruct.Pin = LC3_Pin;
  GPIO_InitStruct.Mode = LL_GPIO_MODE_OUTPUT;
  GPIO_InitStruct.Speed = LL_GPIO_SPEED_FREQ_HIGH;
  GPIO_InitStruct.OutputType = LL_GPIO_OUTPUT_PUSHPULL;
  GPIO_InitStruct.Pull = LL_GPIO_PULL_DOWN;
  LL_GPIO_Init(LC3_GPIO_Port, &GPIO_InitStruct);

  /**/
  GPIO_InitStruct.Pin = SHDN_Pin;
  GPIO_InitStruct.Mode = LL_GPIO_MODE_OUTPUT;
  GPIO_InitStruct.Speed = LL_GPIO_SPEED_FREQ_HIGH;
  GPIO_InitStruct.OutputType = LL_GPIO_OUTPUT_PUSHPULL;
  GPIO_InitStruct.Pull = LL_GPIO_PULL_DOWN;
  LL_GPIO_Init(SHDN_GPIO_Port, &GPIO_InitStruct);

  /**/
  GPIO_InitStruct.Pin = LL_GPIO_PIN_5;
  GPIO_InitStruct.Mode = LL_GPIO_MODE_ANALOG;
  GPIO_InitStruct.Pull = LL_GPIO_PULL_NO;
  LL_GPIO_Init(GPIOA, &GPIO_InitStruct);

  /**/
  GPIO_InitStruct.Pin = LL_GPIO_PIN_2;
  GPIO_InitStruct.Mode = LL_GPIO_MODE_ANALOG;
  GPIO_InitStruct.Pull = LL_GPIO_PULL_NO;
  LL_GPIO_Init(GPIOB, &GPIO_InitStruct);

  /**/
  GPIO_InitStruct.Pin = BTN1_Pin;
  GPIO_InitStruct.Mode = LL_GPIO_MODE_INPUT;
  GPIO_InitStruct.Pull = LL_GPIO_PULL_UP;
  LL_GPIO_Init(BTN1_GPIO_Port, &GPIO_InitStruct);

  /**/
  GPIO_InitStruct.Pin = BTN2_Pin;
  GPIO_InitStruct.Mode = LL_GPIO_MODE_INPUT;
  GPIO_InitStruct.Pull = LL_GPIO_PULL_UP;
  LL_GPIO_Init(BTN2_GPIO_Port, &GPIO_InitStruct);

  /**/
  GPIO_InitStruct.Pin = LL_GPIO_PIN_6;
  GPIO_InitStruct.Mode = LL_GPIO_MODE_ANALOG;
  GPIO_InitStruct.Pull = LL_GPIO_PULL_NO;
  LL_GPIO_Init(GPIOC, &GPIO_InitStruct);

  /**/
  GPIO_InitStruct.Pin = BTN3_Pin;
  GPIO_InitStruct.Mode = LL_GPIO_MODE_INPUT;
  GPIO_InitStruct.Pull = LL_GPIO_PULL_UP;
  LL_GPIO_Init(BTN3_GPIO_Port, &GPIO_InitStruct);

  /**/
  GPIO_InitStruct.Pin = BTN4_Pin;
  GPIO_InitStruct.Mode = LL_GPIO_MODE_INPUT;
  GPIO_InitStruct.Pull = LL_GPIO_PULL_UP;
  LL_GPIO_Init(BTN4_GPIO_Port, &GPIO_InitStruct);

  /**/
  GPIO_InitStruct.Pin = LL_GPIO_PIN_12;
  GPIO_InitStruct.Mode = LL_GPIO_MODE_ANALOG;
  GPIO_InitStruct.Pull = LL_GPIO_PULL_NO;
  LL_GPIO_Init(GPIOA, &GPIO_InitStruct);

  /**/
  GPIO_InitStruct.Pin = LL_GPIO_PIN_15;
  GPIO_InitStruct.Mode = LL_GPIO_MODE_ANALOG;
  GPIO_InitStruct.Pull = LL_GPIO_PULL_NO;
  LL_GPIO_Init(GPIOA, &GPIO_InitStruct);

  /**/
  GPIO_InitStruct.Pin = Latch_Pin;
  GPIO_InitStruct.Mode = LL_GPIO_MODE_OUTPUT;
  GPIO_InitStruct.Speed = LL_GPIO_SPEED_FREQ_HIGH;
  GPIO_InitStruct.OutputType = LL_GPIO_OUTPUT_OPENDRAIN;
  GPIO_InitStruct.Pull = LL_GPIO_PULL_NO;
  LL_GPIO_Init(Latch_GPIO_Port, &GPIO_InitStruct);

  /**/
  LL_EXTI_SetEXTISource(LL_EXTI_CONFIG_PORTC, LL_EXTI_CONFIG_LINE14);

  /**/
  EXTI_InitStruct.Line_0_31 = LL_EXTI_LINE_14;
  EXTI_InitStruct.LineCommand = ENABLE;
  EXTI_InitStruct.Mode = LL_EXTI_MODE_IT;
  EXTI_InitStruct.Trigger = LL_EXTI_TRIGGER_RISING;
  LL_EXTI_Init(&EXTI_InitStruct);

  /**/
  LL_GPIO_SetPinPull(IRQ_GPIO_Port, IRQ_Pin, LL_GPIO_PULL_UP);

  /**/
  LL_GPIO_SetPinMode(IRQ_GPIO_Port, IRQ_Pin, LL_GPIO_MODE_INPUT);

  /* EXTI interrupt init*/
  NVIC_SetPriority(EXTI4_15_IRQn, 0);
  NVIC_EnableIRQ(EXTI4_15_IRQn);

}

/* USER CODE BEGIN 4 */
/**
 * S U B R O U T I N E S
 */

/* Feel byte with tube position by digit.
 * If digit == 0xf, then tube is off -- clear all bits.
 */
static void showDigit(tube_pos_t pos, uint8_t dig)
{
  if (dig > 9) {
    if (dig != 0xf) {
      dig = 0;
    }
  }

  switch (pos) {
  case Tube_E:
    tubesBuffer[0] = 0;
    tubesBuffer[1] &= nixieCathodeMask[Tube_E][1];
    if (Tube_E != 0xf) {
      tubesBuffer[0] = (uint8_t)(nixieCathodeMap[Tube_E][dig] >> 8);
      tubesBuffer[1] |= (uint8_t)(nixieCathodeMap[Tube_E][dig]);
    }
    break;

  case Tube_D:
    tubesBuffer[1] &= nixieCathodeMask[Tube_D][0];
    tubesBuffer[2] &= nixieCathodeMask[Tube_D][1];
    if (Tube_D != 0xf) {
      tubesBuffer[1] |= (uint8_t)(nixieCathodeMap[Tube_D][dig] >> 8);
      tubesBuffer[2] |= (uint8_t)(nixieCathodeMap[Tube_D][dig]);
    }
    break;

  case Tube_B:
    tubesBuffer[2] &= nixieCathodeMask[Tube_B][0];
    tubesBuffer[3] &= nixieCathodeMask[Tube_B][1];
    if (Tube_B != 0xf) {
      tubesBuffer[2] |= (uint8_t)(nixieCathodeMap[Tube_B][dig] >> 8);
      tubesBuffer[3] |= (uint8_t)(nixieCathodeMap[Tube_B][dig]);
    }
    break;

  case Tube_A:
    tubesBuffer[3] &= nixieCathodeMask[Tube_A][0];
    tubesBuffer[4] = 0;
    if (Tube_A != 0xf) {
      tubesBuffer[3] |= (uint8_t)(nixieCathodeMap[Tube_A][dig] >> 8);
      tubesBuffer[4] = (uint8_t)(nixieCathodeMap[Tube_A][dig]);
    }
    break;

  default:
    break;
  }
}

/**
  * @brief  ��������� ������.
  * @param  : None
  * @retval : None
  */
static void btnProcess(void) {
  /* get pin state */
  uint32_t pins = BTN_PORT->IDR & BTN_PINS;

  int i;
  for (i=0; i<BTN_NUM; i++) {
    if ((pins & Button[i].pin) == 0) {
    /* button pressed */
      Button[i].time ++;
      if (Button[i].time >= (BTN_TIME_HOLDED/BTN_SCAN_PERIOD)) {
        Button[i].time -= (BTN_TIME_REPEATED/BTN_SCAN_PERIOD);
        if (Button[i].holded == Button[i].pressed) {
          /* if pressed and holded - same function, then button pressed auto repeat */
          ES_PlaceEvent(Button[i].pressed);
        }
      }
    } else if (Button[i].time != 0) {
    /* button released */
      if (Button[i].time >= ((BTN_TIME_HOLDED - BTN_TIME_REPEATED)/BTN_SCAN_PERIOD)) {
        /* process long press */
        ES_PlaceEvent(Button[i].holded);
      } else if (Button[i].time >= (BTN_TIME_PRESSED/BTN_SCAN_PERIOD)) {
        /* process short press */
        ES_PlaceEvent(Button[i].pressed);
      }
      Button[i].time = 0;
      RTOS_SetTask(btnProcess, BTN_SCAN_PAUSE, BTN_SCAN_PERIOD);
    }
  } /* end FOR */
}

void in15Off(void) {
  IN15_OFF;
}

void in15Minus(void) {
  IN15_OFF;
  IN15_Minus;
}

void in15Plus(void) {
  IN15_OFF;
  IN15_Plus;
}

void in15Percent(void) {
  IN15_OFF;
  IN15_Percent;
}

void in15P(void) {
  IN15_OFF;
  IN15_P;
}

void showTime(void) {
  in15Minus();
  RTOS_SetTask(in15Off, 500, 0);

  showDigit(Tube_A, Clock.Hr >> 4);
  showDigit(Tube_B, Clock.Hr & 0xf);
  showDigit(Tube_D, Clock.Min >> 4);
  showDigit(Tube_E, Clock.Min & 0xf);

  tubes_Refresh();
}

void showWD(void) {
  dispWDT = DISP_WDT_TIME;
  IN15_OFF;

  showDigit(Tube_A, 0xf);
  showDigit(Tube_B, Clock.WD & 0xf);
  showDigit(Tube_D, 0xf);
  showDigit(Tube_E, 0xf);

  tubes_Refresh();
}

void showDay(void) {
  dispWDT = DISP_WDT_TIME;
  IN15_OFF;

  showDigit(Tube_A, Clock.Day >> 4);
  showDigit(Tube_B, Clock.Day & 0xf);
  showDigit(Tube_D, 0xf);
  showDigit(Tube_E, 0xf);

  tubes_Refresh();
}

void showMonth(void) {
  dispWDT = DISP_WDT_TIME;
  IN15_OFF;

  showDigit(Tube_A, 0xf);
  showDigit(Tube_B, 0xf);
  showDigit(Tube_D, Clock.Mon >> 4);
  showDigit(Tube_E, Clock.Mon & 0xf);

  tubes_Refresh();
}

void showDayMon(void) {
  dispWDT = DISP_WDT_TIME;
  IN15_OFF;

  showDigit(Tube_A, Clock.Day >> 4);
  showDigit(Tube_B, Clock.Day & 0xf);
  showDigit(Tube_D, Clock.Mon >> 4);
  showDigit(Tube_E, Clock.Mon & 0xf);

  tubes_Refresh();
}

void showYear(void) {
  dispWDT = DISP_WDT_TIME;
  IN15_OFF;

  showDigit(Tube_A, 2);
  showDigit(Tube_B, 0);
  showDigit(Tube_D, Clock.Year >> 4);
  showDigit(Tube_E, Clock.Year & 0xf);

  tubes_Refresh();
}

void showHumidity(void) {
  dispWDT = DISP_WDT_TIME;
  in15Percent();

  showDigit(Tube_A, Humidity >> 4);
  showDigit(Tube_B, Humidity & 0xf);
  showDigit(Tube_D, 0xf);
  showDigit(Tube_E, 0xf);

  tubes_Refresh();
}

void showTemperature(void) {
  dispWDT = DISP_WDT_TIME;
  in15Plus();

  showDigit(Tube_A, 0xf);
  showDigit(Tube_B, 0xf);
  showDigit(Tube_D, Temperature >> 4);
  showDigit(Tube_E, Temperature & 0xf);

  tubes_Refresh();
}

void showPressure(void) {
  dispWDT = DISP_WDT_TIME;
  in15P();

  showDigit(Tube_A, 0xf);
  showDigit(Tube_B, Pressure.s16.u8H & 0xf);
  showDigit(Tube_D, Pressure.s16.u8L >> 4);
  showDigit(Tube_E, Pressure.s16.u8L & 0xf);

  tubes_Refresh();
}

/* Simple function for cyclic show all sensor data */
void showSensorData(void) {
  ES_SetState(stShowSensorData);

  showTemperature();
  tdelay_ms(3000);

  showHumidity();
  tdelay_ms(3000);

  showPressure();
  tdelay_ms(3000);

  ES_SetState(stShowTime);
  showTime();
}

/* USER CODE END 4 */

/**
  * @brief  This function is executed in case of error occurrence.
  * @retval None
  */
void Error_Handler(void)
{
  /* USER CODE BEGIN Error_Handler_Debug */
  /* User can add his own implementation to report the HAL error return state */
  __disable_irq();
  while (1)
  {
  }
  /* USER CODE END Error_Handler_Debug */
}

#ifdef  USE_FULL_ASSERT
/**
  * @brief  Reports the name of the source file and the source line number
  *         where the assert_param error has occurred.
  * @param  file: pointer to the source file name
  * @param  line: assert_param error line source number
  * @retval None
  */
void assert_failed(uint8_t *file, uint32_t line)
{
  /* USER CODE BEGIN 6 */
  /* User can add his own implementation to report the file name and line number,
     ex: printf("Wrong parameters value: file %s on line %d\r\n", file, line) */
  /* USER CODE END 6 */
}
#endif /* USE_FULL_ASSERT */

/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/