/**
********************************************************************************
* @file stm8s_uart4.c
* @author MCD Application Team
* @version V2.2.0
* @date 30-September-2014
* @brief This file contains all the functions for the UART4 peripheral.
******************************************************************************
* @attention
*
*
© COPYRIGHT 2014 STMicroelectronics
*
* Licensed under MCD-ST Liberty SW License Agreement V2, (the "License");
* You may not use this file except in compliance with the License.
* You may obtain a copy of the License at:
*
* http://www.st.com/software_license_agreement_liberty_v2
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
******************************************************************************
*/
/* Includes ------------------------------------------------------------------*/
#include "stm8s_uart4.h"
/** @addtogroup STM8S_StdPeriph_Driver
* @{
*/
/* Private typedef -----------------------------------------------------------*/
/* Private define ------------------------------------------------------------*/
/* Private macro -------------------------------------------------------------*/
/* Private variables ---------------------------------------------------------*/
/* Private function prototypes -----------------------------------------------*/
/* Private functions ---------------------------------------------------------*/
/* Public functions ----------------------------------------------------------*/
/** @}
* @addtogroup UART4_Public_Functions
* @{
*/
/**
* @brief Deinitializes the UART peripheral.
* @param None
* @retval None
*/
void UART4_DeInit(void)
{
/* Clear the Idle Line Detected bit in the status register by a read
to the UART4_SR register followed by a Read to the UART4_DR register */
(void)UART4->SR;
(void)UART4->DR;
UART4->BRR2 = UART4_BRR2_RESET_VALUE; /* Set UART4_BRR2 to reset value 0x00 */
UART4->BRR1 = UART4_BRR1_RESET_VALUE; /* Set UART4_BRR1 to reset value 0x00 */
UART4->CR1 = UART4_CR1_RESET_VALUE; /* Set UART4_CR1 to reset value 0x00 */
UART4->CR2 = UART4_CR2_RESET_VALUE; /* Set UART4_CR2 to reset value 0x00 */
UART4->CR3 = UART4_CR3_RESET_VALUE; /* Set UART4_CR3 to reset value 0x00 */
UART4->CR4 = UART4_CR4_RESET_VALUE; /* Set UART4_CR4 to reset value 0x00 */
UART4->CR5 = UART4_CR5_RESET_VALUE; /* Set UART4_CR5 to reset value 0x00 */
UART4->CR6 = UART4_CR6_RESET_VALUE; /* Set UART4_CR6 to reset value 0x00 */
}
/**
* @brief Initializes the UART4 according to the specified parameters.
* @param BaudRate: The baudrate.
* @param WordLength : This parameter can be any of the
* @ref UART4_WordLength_TypeDef enumeration.
* @param StopBits: This parameter can be any of the
* @ref UART4_StopBits_TypeDef enumeration.
* @param Parity: This parameter can be any of the
* @ref UART4_Parity_TypeDef enumeration.
* @param SyncMode: This parameter can be any of the
* @ref UART4_SyncMode_TypeDef values.
* @param Mode: This parameter can be any of the @ref UART4_Mode_TypeDef values
* @retval None
*/
void UART4_Init(uint32_t BaudRate, UART4_WordLength_TypeDef WordLength, UART4_StopBits_TypeDef StopBits, UART4_Parity_TypeDef Parity, UART4_SyncMode_TypeDef SyncMode, UART4_Mode_TypeDef Mode)
{
uint8_t BRR2_1 = 0, BRR2_2 = 0;
uint32_t BaudRate_Mantissa = 0, BaudRate_Mantissa100 = 0;
/* Check the parameters */
assert_param(IS_UART4_BAUDRATE_OK(BaudRate));
assert_param(IS_UART4_WORDLENGTH_OK(WordLength));
assert_param(IS_UART4_STOPBITS_OK(StopBits));
assert_param(IS_UART4_PARITY_OK(Parity));
assert_param(IS_UART4_MODE_OK((uint8_t)Mode));
assert_param(IS_UART4_SYNCMODE_OK((uint8_t)SyncMode));
/* Clear the word length bit */
UART4->CR1 &= (uint8_t)(~UART4_CR1_M);
/* Set the word length bit according to UART4_WordLength value */
UART4->CR1 |= (uint8_t)WordLength;
/* Clear the STOP bits */
UART4->CR3 &= (uint8_t)(~UART4_CR3_STOP);
/* Set the STOP bits number according to UART4_StopBits value */
UART4->CR3 |= (uint8_t)StopBits;
/* Clear the Parity Control bit */
UART4->CR1 &= (uint8_t)(~(UART4_CR1_PCEN | UART4_CR1_PS ));
/* Set the Parity Control bit to UART4_Parity value */
UART4->CR1 |= (uint8_t)Parity;
/* Clear the LSB mantissa of UART4DIV */
UART4->BRR1 &= (uint8_t)(~UART4_BRR1_DIVM);
/* Clear the MSB mantissa of UART4DIV */
UART4->BRR2 &= (uint8_t)(~UART4_BRR2_DIVM);
/* Clear the Fraction bits of UART4DIV */
UART4->BRR2 &= (uint8_t)(~UART4_BRR2_DIVF);
/* Set the UART4 BaudRates in BRR1 and BRR2 registers according to UART4_BaudRate value */
BaudRate_Mantissa = ((uint32_t)CLK_GetClockFreq() / (BaudRate << 4));
BaudRate_Mantissa100 = (((uint32_t)CLK_GetClockFreq() * 100) / (BaudRate << 4));
/* The fraction and MSB mantissa should be loaded in one step in the BRR2 register*/
/* Set the fraction of UARTDIV */
BRR2_1 = (uint8_t)((uint8_t)(((BaudRate_Mantissa100 - (BaudRate_Mantissa * 100))
<< 4) / 100) & (uint8_t)0x0F);
BRR2_2 = (uint8_t)((BaudRate_Mantissa >> 4) & (uint8_t)0xF0);
UART4->BRR2 = (uint8_t)(BRR2_1 | BRR2_2);
/* Set the LSB mantissa of UARTDIV */
UART4->BRR1 = (uint8_t)BaudRate_Mantissa;
/* Disable the Transmitter and Receiver before setting the LBCL, CPOL and CPHA bits */
UART4->CR2 &= (uint8_t)~(UART4_CR2_TEN | UART4_CR2_REN);
/* Clear the Clock Polarity, lock Phase, Last Bit Clock pulse */
UART4->CR3 &= (uint8_t)~(UART4_CR3_CPOL | UART4_CR3_CPHA | UART4_CR3_LBCL);
/* Set the Clock Polarity, lock Phase, Last Bit Clock pulse */
UART4->CR3 |= (uint8_t)((uint8_t)SyncMode & (uint8_t)(UART4_CR3_CPOL | \
UART4_CR3_CPHA | UART4_CR3_LBCL));
if((uint8_t)(Mode & UART4_MODE_TX_ENABLE))
{
/* Set the Transmitter Enable bit */
UART4->CR2 |= (uint8_t)UART4_CR2_TEN;
}
else
{
/* Clear the Transmitter Disable bit */
UART4->CR2 &= (uint8_t)(~UART4_CR2_TEN);
}
if((uint8_t)(Mode & UART4_MODE_RX_ENABLE))
{
/* Set the Receiver Enable bit */
UART4->CR2 |= (uint8_t)UART4_CR2_REN;
}
else
{
/* Clear the Receiver Disable bit */
UART4->CR2 &= (uint8_t)(~UART4_CR2_REN);
}
/* Set the Clock Enable bit, lock Polarity, lock Phase and Last Bit Clock
pulse bits according to UART4_Mode value */
if((uint8_t)(SyncMode & UART4_SYNCMODE_CLOCK_DISABLE))
{
/* Clear the Clock Enable bit */
UART4->CR3 &= (uint8_t)(~UART4_CR3_CKEN);
}
else
{
UART4->CR3 |= (uint8_t)((uint8_t)SyncMode & UART4_CR3_CKEN);
}
}
/**
* @brief Enable the UART4 peripheral.
* @param NewState : The new state of the UART Communication.
* This parameter can be any of the @ref FunctionalState enumeration.
* @retval None
*/
void UART4_Cmd(FunctionalState NewState)
{
if(NewState != DISABLE)
{
/* UART4 Enable */
UART4->CR1 &= (uint8_t)(~UART4_CR1_UARTD);
}
else
{
/* UART4 Disable */
UART4->CR1 |= UART4_CR1_UARTD;
}
}
/**
* @brief Enables or disables the specified UART4 interrupts.
* @param UART4_IT specifies the UART4 interrupt sources to be enabled or disabled.
* This parameter can be one of the following values:
* - UART4_IT_LBDF: LIN Break detection interrupt
* - UART4_IT_LHDF: LIN Break detection interrupt
* - UART4_IT_TXE: Transmit Data Register empty interrupt
* - UART4_IT_TC: Transmission complete interrupt
* - UART4_IT_RXNE_OR: Receive Data register not empty/Over run error interrupt
* - UART4_IT_IDLE: Idle line detection interrupt
* - UART4_IT_PE: Parity Error interrupt
* @param NewState new state of the specified UART4 interrupts.
* This parameter can be: ENABLE or DISABLE.
* @retval None
*/
void UART4_ITConfig(UART4_IT_TypeDef UART4_IT, FunctionalState NewState)
{
uint8_t uartreg = 0, itpos = 0x00;
/* Check the parameters */
assert_param(IS_UART4_CONFIG_IT_OK(UART4_IT));
assert_param(IS_FUNCTIONALSTATE_OK(NewState));
/* Get the UART4 register index */
uartreg = (uint8_t)((uint16_t)UART4_IT >> 0x08);
/* Get the UART4 IT index */
itpos = (uint8_t)((uint8_t)1 << (uint8_t)((uint8_t)UART4_IT & (uint8_t)0x0F));
if(NewState != DISABLE)
{
/* Enable the Interrupt bits according to UART4_IT mask */
if(uartreg == 0x01)
{
UART4->CR1 |= itpos;
}
else if(uartreg == 0x02)
{
UART4->CR2 |= itpos;
}
else if(uartreg == 0x03)
{
UART4->CR4 |= itpos;
}
else
{
UART4->CR6 |= itpos;
}
}
else
{
/* Disable the interrupt bits according to UART4_IT mask */
if(uartreg == 0x01)
{
UART4->CR1 &= (uint8_t)(~itpos);
}
else if(uartreg == 0x02)
{
UART4->CR2 &= (uint8_t)(~itpos);
}
else if(uartreg == 0x03)
{
UART4->CR4 &= (uint8_t)(~itpos);
}
else
{
UART4->CR6 &= (uint8_t)(~itpos);
}
}
}
/**
* @brief Enables or disables the UART’s Half Duplex communication.
* @param NewState new state of the UART Communication.
* This parameter can be: ENABLE or DISABLE.
* @retval None
*/
void UART4_HalfDuplexCmd(FunctionalState NewState)
{
assert_param(IS_FUNCTIONALSTATE_OK(NewState));
if (NewState != DISABLE)
{
UART4->CR5 |= UART4_CR5_HDSEL; /**< UART4 Half Duplex Enable */
}
else
{
UART4->CR5 &= (uint8_t)~UART4_CR5_HDSEL; /**< UART4 Half Duplex Disable */
}
}
/**
* @brief Configures the UART4’s IrDA interface.
* @param UART4_IrDAMode specifies the IrDA mode.
* This parameter can be any of the @ref UART4_IrDAMode_TypeDef values.
* @retval None
*/
void UART4_IrDAConfig(UART4_IrDAMode_TypeDef UART4_IrDAMode)
{
assert_param(IS_UART4_IRDAMODE_OK(UART4_IrDAMode));
if(UART4_IrDAMode != UART4_IRDAMODE_NORMAL)
{
UART4->CR5 |= UART4_CR5_IRLP;
}
else
{
UART4->CR5 &= ((uint8_t)~UART4_CR5_IRLP);
}
}
/**
* @brief Enables or disables the UART4’s IrDA interface.
* @param NewState new state of the IrDA mode.
* This parameter can be: ENABLE or DISABLE.
* @retval None
*/
void UART4_IrDACmd(FunctionalState NewState)
{
/* Check parameters */
assert_param(IS_FUNCTIONALSTATE_OK(NewState));
if(NewState != DISABLE)
{
/* Enable the IrDA mode by setting the IREN bit in the CR3 register */
UART4->CR5 |= UART4_CR5_IREN;
}
else
{
/* Disable the IrDA mode by clearing the IREN bit in the CR3 register */
UART4->CR5 &= ((uint8_t)~UART4_CR5_IREN);
}
}
/**
* @brief Sets the UART4 LIN Break detection length.
* @param UART4_LINBreakDetectionLength specifies the LIN break detection length.
* This parameter can be any of the
* @ref UART4_LINBreakDetectionLength_TypeDef values.
* @retval None
*/
void UART4_LINBreakDetectionConfig(UART4_LINBreakDetectionLength_TypeDef UART4_LINBreakDetectionLength)
{
/* Check parameters */
assert_param(IS_UART4_LINBREAKDETECTIONLENGTH_OK(UART4_LINBreakDetectionLength));
if(UART4_LINBreakDetectionLength != UART4_LINBREAKDETECTIONLENGTH_10BITS)
{
UART4->CR4 |= UART4_CR4_LBDL;
}
else
{
UART4->CR4 &= ((uint8_t)~UART4_CR4_LBDL);
}
}
/**
* @brief Configure the UART4 peripheral.
* @param UART4_Mode specifies the LIN mode.
* This parameter can be any of the @ref UART4_LinMode_TypeDef values.
* @param UART4_Autosync specifies the LIN automatic resynchronization mode.
* This parameter can be any of the @ref UART4_LinAutosync_TypeDef values.
* @param UART4_DivUp specifies the LIN divider update method.
* This parameter can be any of the @ref UART4_LinDivUp_TypeDef values.
* @retval None
*/
void UART4_LINConfig(UART4_LinMode_TypeDef UART4_Mode,
UART4_LinAutosync_TypeDef UART4_Autosync,
UART4_LinDivUp_TypeDef UART4_DivUp)
{
/* Check parameters */
assert_param(IS_UART4_SLAVE_OK(UART4_Mode));
assert_param(IS_UART4_AUTOSYNC_OK(UART4_Autosync));
assert_param(IS_UART4_DIVUP_OK(UART4_DivUp));
if(UART4_Mode != UART4_LIN_MODE_MASTER)
{
UART4->CR6 |= UART4_CR6_LSLV;
}
else
{
UART4->CR6 &= ((uint8_t)~UART4_CR6_LSLV);
}
if(UART4_Autosync != UART4_LIN_AUTOSYNC_DISABLE)
{
UART4->CR6 |= UART4_CR6_LASE ;
}
else
{
UART4->CR6 &= ((uint8_t)~ UART4_CR6_LASE );
}
if(UART4_DivUp != UART4_LIN_DIVUP_LBRR1)
{
UART4->CR6 |= UART4_CR6_LDUM;
}
else
{
UART4->CR6 &= ((uint8_t)~ UART4_CR6_LDUM);
}
}
/**
* @brief Enables or disables the UART4 LIN mode.
* @param NewState is new state of the UART4 LIN mode.
* This parameter can be ENABLE or DISABLE
* @retval None
*/
void UART4_LINCmd(FunctionalState NewState)
{
assert_param(IS_FUNCTIONALSTATE_OK(NewState));
if(NewState != DISABLE)
{
/* Enable the LIN mode by setting the LINE bit in the CR2 register */
UART4->CR3 |= UART4_CR3_LINEN;
}
else
{
/* Disable the LIN mode by clearing the LINE bit in the CR2 register */
UART4->CR3 &= ((uint8_t)~UART4_CR3_LINEN);
}
}
/**
* @brief Enables or disables the UART4 Smart Card mode.
* @param NewState: new state of the Smart Card mode.
* This parameter can be: ENABLE or DISABLE.
* @retval None
*/
void UART4_SmartCardCmd(FunctionalState NewState)
{
/* Check parameters */
assert_param(IS_FUNCTIONALSTATE_OK(NewState));
if(NewState != DISABLE)
{
/* Enable the SC mode by setting the SCEN bit in the CR5 register */
UART4->CR5 |= UART4_CR5_SCEN;
}
else
{
/* Disable the SC mode by clearing the SCEN bit in the CR5 register */
UART4->CR5 &= ((uint8_t)(~UART4_CR5_SCEN));
}
}
/**
* @brief Enables or disables NACK transmission.
* @param NewState: new state of the Smart Card mode.
* This parameter can be: ENABLE or DISABLE.
* @retval None
*/
void UART4_SmartCardNACKCmd(FunctionalState NewState)
{
/* Check parameters */
assert_param(IS_FUNCTIONALSTATE_OK(NewState));
if(NewState != DISABLE)
{
/* Enable the NACK transmission by setting the NACK bit in the CR5 register */
UART4->CR5 |= UART4_CR5_NACK;
}
else
{
/* Disable the NACK transmission by clearing the NACK bit in the CR5 register */
UART4->CR5 &= ((uint8_t)~(UART4_CR5_NACK));
}
}
/**
* @brief Selects the UART4 WakeUp method.
* @param UART4_WakeUp: specifies the UART4 wakeup method.
* This parameter can be any of the @ref UART4_WakeUp_TypeDef values.
* @retval None
*/
void UART4_WakeUpConfig(UART4_WakeUp_TypeDef UART4_WakeUp)
{
assert_param(IS_UART4_WAKEUP_OK(UART4_WakeUp));
UART4->CR1 &= ((uint8_t)~UART4_CR1_WAKE);
UART4->CR1 |= (uint8_t)UART4_WakeUp;
}
/**
* @brief Determines if the UART4 is in mute mode or not.
* @param NewState: new state of the UART4 mode.
* This parameter can be ENABLE or DISABLE
* @retval None
*/
void UART4_ReceiverWakeUpCmd(FunctionalState NewState)
{
assert_param(IS_FUNCTIONALSTATE_OK(NewState));
if(NewState != DISABLE)
{
/* Enable the mute mode UART4 by setting the RWU bit in the CR2 register */
UART4->CR2 |= UART4_CR2_RWU;
}
else
{
/* Disable the mute mode UART4 by clearing the RWU bit in the CR1 register */
UART4->CR2 &= ((uint8_t)~UART4_CR2_RWU);
}
}
/**
* @brief Returns the most recent received data by the UART4 peripheral.
* @param None
* @retval Received Data
*/
uint8_t UART4_ReceiveData8(void)
{
return ((uint8_t)UART4->DR);
}
/**
* @brief Returns the most recent received data by the UART4 peripheral.
* @param None
* @retval Received Data
*/
uint16_t UART4_ReceiveData9(void)
{
uint16_t temp = 0;
temp = ((uint16_t)(((uint16_t)((uint16_t)UART4->CR1 & (uint16_t)UART4_CR1_R8)) << 1));
return (uint16_t)((((uint16_t)UART4->DR) | temp) & ((uint16_t)0x01FF));
}
/**
* @brief Transmits 8 bit data through the UART4 peripheral.
* @param Data: the data to transmit.
* @retval None
*/
void UART4_SendData8(uint8_t Data)
{
/* Transmit Data */
UART4->DR = Data;
}
/**
* @brief Transmits 9 bit data through the UART4 peripheral.
* @param Data: the data to transmit.
* @retval None
*/
void UART4_SendData9(uint16_t Data)
{
/* Clear the transmit data bit 8 */
UART4->CR1 &= ((uint8_t)~UART4_CR1_T8);
/* Write the transmit data bit [8] */
UART4->CR1 |= (uint8_t)(((uint8_t)(Data >> 2)) & UART4_CR1_T8);
/* Write the transmit data bit [0:7] */
UART4->DR = (uint8_t)(Data);
}
/**
* @brief Transmits break characters.
* @param None
* @retval None
*/
void UART4_SendBreak(void)
{
UART4->CR2 |= UART4_CR2_SBK;
}
/**
* @brief Sets the address of the UART4 node.
* @param UART4_Address: Indicates the address of the UART4 node.
* @retval None
*/
void UART4_SetAddress(uint8_t UART4_Address)
{
/*assert_param for x UART4_Address*/
assert_param(IS_UART4_ADDRESS_OK(UART4_Address));
/* Clear the UART4 address */
UART4->CR4 &= ((uint8_t)~UART4_CR4_ADD);
/* Set the UART4 address node */
UART4->CR4 |= UART4_Address;
}
/**
* @brief Sets the specified UART4 guard time.
* @note SmartCard Mode should be Enabled
* @param UART4_GuardTime: specifies the guard time.
* @retval None
*/
void UART4_SetGuardTime(uint8_t UART4_GuardTime)
{
/* Set the UART4 guard time */
UART4->GTR = UART4_GuardTime;
}
/**
* @brief Sets the system clock prescaler.
* @note IrDA Low Power mode or smartcard mode should be enabled
* @note This function is related to SmartCard and IrDa mode.
* @param UART4_Prescaler: specifies the prescaler clock.
* This parameter can be one of the following values:
* @par IrDA Low Power Mode
* The clock source is divided by the value given in the register (8 bits)
* - 0000 0000 Reserved
* - 0000 0001 divides the clock source by 1
* - 0000 0010 divides the clock source by 2
* - ...
* @par Smart Card Mode
* The clock source is divided by the value given in the register
* (5 significant bits) multiplied by 2
* - 0 0000 Reserved
* - 0 0001 divides the clock source by 2
* - 0 0010 divides the clock source by 4
* - 0 0011 divides the clock source by 6
* - ...
* @retval None
*/
void UART4_SetPrescaler(uint8_t UART4_Prescaler)
{
/* Load the UART4 prescaler value*/
UART4->PSCR = UART4_Prescaler;
}
/**
* @brief Checks whether the specified UART4 flag is set or not.
* @param UART4_FLAG specifies the flag to check.
* This parameter can be any of the @ref UART4_Flag_TypeDef enumeration.
* @retval FlagStatus (SET or RESET)
*/
FlagStatus UART4_GetFlagStatus(UART4_Flag_TypeDef UART4_FLAG)
{
FlagStatus status = RESET;
/* Check parameters */
assert_param(IS_UART4_FLAG_OK(UART4_FLAG));
/* Check the status of the specified UART4 flag*/
if(UART4_FLAG == UART4_FLAG_LBDF)
{
if((UART4->CR4 & (uint8_t)UART4_FLAG) != (uint8_t)0x00)
{
/* UART4_FLAG is set*/
status = SET;
}
else
{
/* UART4_FLAG is reset*/
status = RESET;
}
}
else if(UART4_FLAG == UART4_FLAG_SBK)
{
if((UART4->CR2 & (uint8_t)UART4_FLAG) != (uint8_t)0x00)
{
/* UART4_FLAG is set*/
status = SET;
}
else
{
/* UART4_FLAG is reset*/
status = RESET;
}
}
else if((UART4_FLAG == UART4_FLAG_LHDF) || (UART4_FLAG == UART4_FLAG_LSF))
{
if((UART4->CR6 & (uint8_t)UART4_FLAG) != (uint8_t)0x00)
{
/* UART4_FLAG is set*/
status = SET;
}
else
{
/* UART4_FLAG is reset*/
status = RESET;
}
}
else
{
if((UART4->SR & (uint8_t)UART4_FLAG) != (uint8_t)0x00)
{
/* UART4_FLAG is set*/
status = SET;
}
else
{
/* UART4_FLAG is reset*/
status = RESET;
}
}
/* Return the UART4_FLAG status*/
return status;
}
/**
* @brief Clears the UART4 flags.
* @param UART4_FLAG specifies the flag to clear
* This parameter can be any combination of the following values:
* - UART4_FLAG_LBDF: LIN Break detection flag.
* - UART4_FLAG_LHDF: LIN Header detection flag.
* - UART4_FLAG_LSF: LIN synchrone field flag.
* - UART4_FLAG_RXNE: Receive data register not empty flag.
* @note:
* - PE (Parity error), FE (Framing error), NE (Noise error),
* OR (OverRun error) and IDLE (Idle line detected) flags are cleared
* by software sequence: a read operation to UART4_SR register
* (UART4_GetFlagStatus())followed by a read operation to UART4_DR
* register(UART4_ReceiveData8() or UART4_ReceiveData9()).
*
* - RXNE flag can be also cleared by a read to the UART4_DR register
* (UART4_ReceiveData8()or UART4_ReceiveData9()).
*
* - TC flag can be also cleared by software sequence: a read operation
* to UART4_SR register (UART4_GetFlagStatus()) followed by a write
* operation to UART4_DR register (UART4_SendData8() or UART4_SendData9()).
*
* - TXE flag is cleared only by a write to the UART4_DR register
* (UART4_SendData8() or UART4_SendData9()).
*
* - SBK flag is cleared during the stop bit of break.
* @retval None
*/
void UART4_ClearFlag(UART4_Flag_TypeDef UART4_FLAG)
{
assert_param(IS_UART4_CLEAR_FLAG_OK(UART4_FLAG));
/* Clear the Receive Register Not Empty flag */
if(UART4_FLAG == UART4_FLAG_RXNE)
{
UART4->SR = (uint8_t)~(UART4_SR_RXNE);
}
/* Clear the LIN Break Detection flag */
else if(UART4_FLAG == UART4_FLAG_LBDF)
{
UART4->CR4 &= (uint8_t)(~UART4_CR4_LBDF);
}
/* Clear the LIN Header Detection Flag */
else if(UART4_FLAG == UART4_FLAG_LHDF)
{
UART4->CR6 &= (uint8_t)(~UART4_CR6_LHDF);
}
/* Clear the LIN Synch Field flag */
else
{
UART4->CR6 &= (uint8_t)(~UART4_CR6_LSF);
}
}
/**
* @brief Checks whether the specified UART4 interrupt has occurred or not.
* @param UART4_IT: Specifies the UART4 interrupt pending bit to check.
* This parameter can be one of the following values:
* - UART4_IT_LBDF: LIN Break detection interrupt
* - UART4_IT_TXE: Transmit Data Register empty interrupt
* - UART4_IT_TC: Transmission complete interrupt
* - UART4_IT_RXNE: Receive Data register not empty interrupt
* - UART4_IT_IDLE: Idle line detection interrupt
* - UART4_IT_OR: OverRun Error interrupt
* - UART4_IT_PE: Parity Error interrupt
* @retval The state of UART4_IT (SET or RESET).
*/
ITStatus UART4_GetITStatus(UART4_IT_TypeDef UART4_IT)
{
ITStatus pendingbitstatus = RESET;
uint8_t itpos = 0;
uint8_t itmask1 = 0;
uint8_t itmask2 = 0;
uint8_t enablestatus = 0;
/* Check parameters */
assert_param(IS_UART4_GET_IT_OK(UART4_IT));
/* Get the UART4 IT index*/
itpos = (uint8_t)((uint8_t)1 << (uint8_t)((uint8_t)UART4_IT & (uint8_t)0x0F));
/* Get the UART4 IT index*/
itmask1 = (uint8_t)((uint8_t)UART4_IT >> (uint8_t)4);
/* Set the IT mask*/
itmask2 = (uint8_t)((uint8_t)1 << itmask1);
/* Check the status of the specified UART4 pending bit*/
if(UART4_IT == UART4_IT_PE)
{
/* Get the UART4_ITPENDINGBIT enable bit status*/
enablestatus = (uint8_t)((uint8_t)UART4->CR1 & itmask2);
/* Check the status of the specified UART4 interrupt*/
if(((UART4->SR & itpos) != (uint8_t)0x00) && enablestatus)
{
/* Interrupt occurred*/
pendingbitstatus = SET;
}
else
{
/* Interrupt not occurred*/
pendingbitstatus = RESET;
}
}
else if(UART4_IT == UART4_IT_LBDF)
{
/* Get the UART4_IT enable bit status*/
enablestatus = (uint8_t)((uint8_t)UART4->CR4 & itmask2);
/* Check the status of the specified UART4 interrupt*/
if(((UART4->CR4 & itpos) != (uint8_t)0x00) && enablestatus)
{
/* Interrupt occurred*/
pendingbitstatus = SET;
}
else
{
/* Interrupt not occurred*/
pendingbitstatus = RESET;
}
}
else if(UART4_IT == UART4_IT_LHDF)
{
/* Get the UART4_IT enable bit status*/
enablestatus = (uint8_t)((uint8_t)UART4->CR6 & itmask2);
/* Check the status of the specified UART4 interrupt*/
if(((UART4->CR6 & itpos) != (uint8_t)0x00) && enablestatus)
{
/* Interrupt occurred*/
pendingbitstatus = SET;
}
else
{
/* Interrupt not occurred*/
pendingbitstatus = RESET;
}
}
else
{
/* Get the UART4_IT enable bit status*/
enablestatus = (uint8_t)((uint8_t)UART4->CR2 & itmask2);
/* Check the status of the specified UART4 interrupt*/
if(((UART4->SR & itpos) != (uint8_t)0x00) && enablestatus)
{
/* Interrupt occurred*/
pendingbitstatus = SET;
}
else
{
/* Interrupt not occurred*/
pendingbitstatus = RESET;
}
}
/* Return the UART4_IT status*/
return pendingbitstatus;
}
/**
* @brief Clears the UART4 pending flags.
* @param UART4_IT specifies the pending bit to clear
* This parameter can be one of the following values:
* - UART4_IT_LBDF: LIN Break detection interrupt
* - UART4_IT_LHDF: LIN Header detection interrupt
* - UART4_IT_RXNE: Receive Data register not empty interrupt.
* @note
* - PE (Parity error), FE (Framing error), NE (Noise error),
* OR (OverRun error) and IDLE (Idle line detected) pending bits are
* cleared by software sequence: a read operation to UART4_SR register
* (UART4_GetITStatus()) followed by a read operation to UART4_DR register
* (UART4_ReceiveData8() or UART4_ReceiveData9()).
*
* - RXNE pending bit can be also cleared by a read to the UART4_DR
* register (UART4_ReceiveData8() or UART4_ReceiveData9()).
*
* - TC (Transmit complete) pending bit can be cleared by software
* sequence: a read operation to UART4_SR register
* (UART4_GetITStatus()) followed by a write operation to UART4_DR
* register (UART4_SendData8()or UART4_SendData9()).
*
* - TXE pending bit is cleared only by a write to the UART4_DR register
* (UART4_SendData8() or UART4_SendData9()).
* @retval None
*/
void UART4_ClearITPendingBit(UART4_IT_TypeDef UART4_IT)
{
assert_param(IS_UART4_CLEAR_IT_OK(UART4_IT));
/* Clear the Receive Register Not Empty pending bit */
if(UART4_IT == UART4_IT_RXNE)
{
UART4->SR = (uint8_t)~(UART4_SR_RXNE);
}
/* Clear the LIN Break Detection pending bit */
else if(UART4_IT == UART4_IT_LBDF)
{
UART4->CR4 &= (uint8_t)~(UART4_CR4_LBDF);
}
/* Clear the LIN Header Detection pending bit */
else
{
UART4->CR6 &= (uint8_t)(~UART4_CR6_LHDF);
}
}
/**
* @}
*/
/**
* @}
*/
/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/