/** ******************************************************************************** * @file stm8s_uart4.c * @author MCD Application Team * @version V2.2.0 * @date 30-September-2014 * @brief This file contains all the functions for the UART4 peripheral. ****************************************************************************** * @attention * *

© COPYRIGHT 2014 STMicroelectronics

* * Licensed under MCD-ST Liberty SW License Agreement V2, (the "License"); * You may not use this file except in compliance with the License. * You may obtain a copy of the License at: * * http://www.st.com/software_license_agreement_liberty_v2 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. * ****************************************************************************** */ /* Includes ------------------------------------------------------------------*/ #include "stm8s_uart4.h" /** @addtogroup STM8S_StdPeriph_Driver * @{ */ /* Private typedef -----------------------------------------------------------*/ /* Private define ------------------------------------------------------------*/ /* Private macro -------------------------------------------------------------*/ /* Private variables ---------------------------------------------------------*/ /* Private function prototypes -----------------------------------------------*/ /* Private functions ---------------------------------------------------------*/ /* Public functions ----------------------------------------------------------*/ /** @} * @addtogroup UART4_Public_Functions * @{ */ /** * @brief Deinitializes the UART peripheral. * @param None * @retval None */ void UART4_DeInit(void) { /* Clear the Idle Line Detected bit in the status register by a read to the UART4_SR register followed by a Read to the UART4_DR register */ (void)UART4->SR; (void)UART4->DR; UART4->BRR2 = UART4_BRR2_RESET_VALUE; /* Set UART4_BRR2 to reset value 0x00 */ UART4->BRR1 = UART4_BRR1_RESET_VALUE; /* Set UART4_BRR1 to reset value 0x00 */ UART4->CR1 = UART4_CR1_RESET_VALUE; /* Set UART4_CR1 to reset value 0x00 */ UART4->CR2 = UART4_CR2_RESET_VALUE; /* Set UART4_CR2 to reset value 0x00 */ UART4->CR3 = UART4_CR3_RESET_VALUE; /* Set UART4_CR3 to reset value 0x00 */ UART4->CR4 = UART4_CR4_RESET_VALUE; /* Set UART4_CR4 to reset value 0x00 */ UART4->CR5 = UART4_CR5_RESET_VALUE; /* Set UART4_CR5 to reset value 0x00 */ UART4->CR6 = UART4_CR6_RESET_VALUE; /* Set UART4_CR6 to reset value 0x00 */ } /** * @brief Initializes the UART4 according to the specified parameters. * @param BaudRate: The baudrate. * @param WordLength : This parameter can be any of the * @ref UART4_WordLength_TypeDef enumeration. * @param StopBits: This parameter can be any of the * @ref UART4_StopBits_TypeDef enumeration. * @param Parity: This parameter can be any of the * @ref UART4_Parity_TypeDef enumeration. * @param SyncMode: This parameter can be any of the * @ref UART4_SyncMode_TypeDef values. * @param Mode: This parameter can be any of the @ref UART4_Mode_TypeDef values * @retval None */ void UART4_Init(uint32_t BaudRate, UART4_WordLength_TypeDef WordLength, UART4_StopBits_TypeDef StopBits, UART4_Parity_TypeDef Parity, UART4_SyncMode_TypeDef SyncMode, UART4_Mode_TypeDef Mode) { uint8_t BRR2_1 = 0, BRR2_2 = 0; uint32_t BaudRate_Mantissa = 0, BaudRate_Mantissa100 = 0; /* Check the parameters */ assert_param(IS_UART4_BAUDRATE_OK(BaudRate)); assert_param(IS_UART4_WORDLENGTH_OK(WordLength)); assert_param(IS_UART4_STOPBITS_OK(StopBits)); assert_param(IS_UART4_PARITY_OK(Parity)); assert_param(IS_UART4_MODE_OK((uint8_t)Mode)); assert_param(IS_UART4_SYNCMODE_OK((uint8_t)SyncMode)); /* Clear the word length bit */ UART4->CR1 &= (uint8_t)(~UART4_CR1_M); /* Set the word length bit according to UART4_WordLength value */ UART4->CR1 |= (uint8_t)WordLength; /* Clear the STOP bits */ UART4->CR3 &= (uint8_t)(~UART4_CR3_STOP); /* Set the STOP bits number according to UART4_StopBits value */ UART4->CR3 |= (uint8_t)StopBits; /* Clear the Parity Control bit */ UART4->CR1 &= (uint8_t)(~(UART4_CR1_PCEN | UART4_CR1_PS )); /* Set the Parity Control bit to UART4_Parity value */ UART4->CR1 |= (uint8_t)Parity; /* Clear the LSB mantissa of UART4DIV */ UART4->BRR1 &= (uint8_t)(~UART4_BRR1_DIVM); /* Clear the MSB mantissa of UART4DIV */ UART4->BRR2 &= (uint8_t)(~UART4_BRR2_DIVM); /* Clear the Fraction bits of UART4DIV */ UART4->BRR2 &= (uint8_t)(~UART4_BRR2_DIVF); /* Set the UART4 BaudRates in BRR1 and BRR2 registers according to UART4_BaudRate value */ BaudRate_Mantissa = ((uint32_t)CLK_GetClockFreq() / (BaudRate << 4)); BaudRate_Mantissa100 = (((uint32_t)CLK_GetClockFreq() * 100) / (BaudRate << 4)); /* The fraction and MSB mantissa should be loaded in one step in the BRR2 register*/ /* Set the fraction of UARTDIV */ BRR2_1 = (uint8_t)((uint8_t)(((BaudRate_Mantissa100 - (BaudRate_Mantissa * 100)) << 4) / 100) & (uint8_t)0x0F); BRR2_2 = (uint8_t)((BaudRate_Mantissa >> 4) & (uint8_t)0xF0); UART4->BRR2 = (uint8_t)(BRR2_1 | BRR2_2); /* Set the LSB mantissa of UARTDIV */ UART4->BRR1 = (uint8_t)BaudRate_Mantissa; /* Disable the Transmitter and Receiver before setting the LBCL, CPOL and CPHA bits */ UART4->CR2 &= (uint8_t)~(UART4_CR2_TEN | UART4_CR2_REN); /* Clear the Clock Polarity, lock Phase, Last Bit Clock pulse */ UART4->CR3 &= (uint8_t)~(UART4_CR3_CPOL | UART4_CR3_CPHA | UART4_CR3_LBCL); /* Set the Clock Polarity, lock Phase, Last Bit Clock pulse */ UART4->CR3 |= (uint8_t)((uint8_t)SyncMode & (uint8_t)(UART4_CR3_CPOL | \ UART4_CR3_CPHA | UART4_CR3_LBCL)); if((uint8_t)(Mode & UART4_MODE_TX_ENABLE)) { /* Set the Transmitter Enable bit */ UART4->CR2 |= (uint8_t)UART4_CR2_TEN; } else { /* Clear the Transmitter Disable bit */ UART4->CR2 &= (uint8_t)(~UART4_CR2_TEN); } if((uint8_t)(Mode & UART4_MODE_RX_ENABLE)) { /* Set the Receiver Enable bit */ UART4->CR2 |= (uint8_t)UART4_CR2_REN; } else { /* Clear the Receiver Disable bit */ UART4->CR2 &= (uint8_t)(~UART4_CR2_REN); } /* Set the Clock Enable bit, lock Polarity, lock Phase and Last Bit Clock pulse bits according to UART4_Mode value */ if((uint8_t)(SyncMode & UART4_SYNCMODE_CLOCK_DISABLE)) { /* Clear the Clock Enable bit */ UART4->CR3 &= (uint8_t)(~UART4_CR3_CKEN); } else { UART4->CR3 |= (uint8_t)((uint8_t)SyncMode & UART4_CR3_CKEN); } } /** * @brief Enable the UART4 peripheral. * @param NewState : The new state of the UART Communication. * This parameter can be any of the @ref FunctionalState enumeration. * @retval None */ void UART4_Cmd(FunctionalState NewState) { if(NewState != DISABLE) { /* UART4 Enable */ UART4->CR1 &= (uint8_t)(~UART4_CR1_UARTD); } else { /* UART4 Disable */ UART4->CR1 |= UART4_CR1_UARTD; } } /** * @brief Enables or disables the specified UART4 interrupts. * @param UART4_IT specifies the UART4 interrupt sources to be enabled or disabled. * This parameter can be one of the following values: * - UART4_IT_LBDF: LIN Break detection interrupt * - UART4_IT_LHDF: LIN Break detection interrupt * - UART4_IT_TXE: Transmit Data Register empty interrupt * - UART4_IT_TC: Transmission complete interrupt * - UART4_IT_RXNE_OR: Receive Data register not empty/Over run error interrupt * - UART4_IT_IDLE: Idle line detection interrupt * - UART4_IT_PE: Parity Error interrupt * @param NewState new state of the specified UART4 interrupts. * This parameter can be: ENABLE or DISABLE. * @retval None */ void UART4_ITConfig(UART4_IT_TypeDef UART4_IT, FunctionalState NewState) { uint8_t uartreg = 0, itpos = 0x00; /* Check the parameters */ assert_param(IS_UART4_CONFIG_IT_OK(UART4_IT)); assert_param(IS_FUNCTIONALSTATE_OK(NewState)); /* Get the UART4 register index */ uartreg = (uint8_t)((uint16_t)UART4_IT >> 0x08); /* Get the UART4 IT index */ itpos = (uint8_t)((uint8_t)1 << (uint8_t)((uint8_t)UART4_IT & (uint8_t)0x0F)); if(NewState != DISABLE) { /* Enable the Interrupt bits according to UART4_IT mask */ if(uartreg == 0x01) { UART4->CR1 |= itpos; } else if(uartreg == 0x02) { UART4->CR2 |= itpos; } else if(uartreg == 0x03) { UART4->CR4 |= itpos; } else { UART4->CR6 |= itpos; } } else { /* Disable the interrupt bits according to UART4_IT mask */ if(uartreg == 0x01) { UART4->CR1 &= (uint8_t)(~itpos); } else if(uartreg == 0x02) { UART4->CR2 &= (uint8_t)(~itpos); } else if(uartreg == 0x03) { UART4->CR4 &= (uint8_t)(~itpos); } else { UART4->CR6 &= (uint8_t)(~itpos); } } } /** * @brief Enables or disables the UART’s Half Duplex communication. * @param NewState new state of the UART Communication. * This parameter can be: ENABLE or DISABLE. * @retval None */ void UART4_HalfDuplexCmd(FunctionalState NewState) { assert_param(IS_FUNCTIONALSTATE_OK(NewState)); if (NewState != DISABLE) { UART4->CR5 |= UART4_CR5_HDSEL; /**< UART4 Half Duplex Enable */ } else { UART4->CR5 &= (uint8_t)~UART4_CR5_HDSEL; /**< UART4 Half Duplex Disable */ } } /** * @brief Configures the UART4’s IrDA interface. * @param UART4_IrDAMode specifies the IrDA mode. * This parameter can be any of the @ref UART4_IrDAMode_TypeDef values. * @retval None */ void UART4_IrDAConfig(UART4_IrDAMode_TypeDef UART4_IrDAMode) { assert_param(IS_UART4_IRDAMODE_OK(UART4_IrDAMode)); if(UART4_IrDAMode != UART4_IRDAMODE_NORMAL) { UART4->CR5 |= UART4_CR5_IRLP; } else { UART4->CR5 &= ((uint8_t)~UART4_CR5_IRLP); } } /** * @brief Enables or disables the UART4’s IrDA interface. * @param NewState new state of the IrDA mode. * This parameter can be: ENABLE or DISABLE. * @retval None */ void UART4_IrDACmd(FunctionalState NewState) { /* Check parameters */ assert_param(IS_FUNCTIONALSTATE_OK(NewState)); if(NewState != DISABLE) { /* Enable the IrDA mode by setting the IREN bit in the CR3 register */ UART4->CR5 |= UART4_CR5_IREN; } else { /* Disable the IrDA mode by clearing the IREN bit in the CR3 register */ UART4->CR5 &= ((uint8_t)~UART4_CR5_IREN); } } /** * @brief Sets the UART4 LIN Break detection length. * @param UART4_LINBreakDetectionLength specifies the LIN break detection length. * This parameter can be any of the * @ref UART4_LINBreakDetectionLength_TypeDef values. * @retval None */ void UART4_LINBreakDetectionConfig(UART4_LINBreakDetectionLength_TypeDef UART4_LINBreakDetectionLength) { /* Check parameters */ assert_param(IS_UART4_LINBREAKDETECTIONLENGTH_OK(UART4_LINBreakDetectionLength)); if(UART4_LINBreakDetectionLength != UART4_LINBREAKDETECTIONLENGTH_10BITS) { UART4->CR4 |= UART4_CR4_LBDL; } else { UART4->CR4 &= ((uint8_t)~UART4_CR4_LBDL); } } /** * @brief Configure the UART4 peripheral. * @param UART4_Mode specifies the LIN mode. * This parameter can be any of the @ref UART4_LinMode_TypeDef values. * @param UART4_Autosync specifies the LIN automatic resynchronization mode. * This parameter can be any of the @ref UART4_LinAutosync_TypeDef values. * @param UART4_DivUp specifies the LIN divider update method. * This parameter can be any of the @ref UART4_LinDivUp_TypeDef values. * @retval None */ void UART4_LINConfig(UART4_LinMode_TypeDef UART4_Mode, UART4_LinAutosync_TypeDef UART4_Autosync, UART4_LinDivUp_TypeDef UART4_DivUp) { /* Check parameters */ assert_param(IS_UART4_SLAVE_OK(UART4_Mode)); assert_param(IS_UART4_AUTOSYNC_OK(UART4_Autosync)); assert_param(IS_UART4_DIVUP_OK(UART4_DivUp)); if(UART4_Mode != UART4_LIN_MODE_MASTER) { UART4->CR6 |= UART4_CR6_LSLV; } else { UART4->CR6 &= ((uint8_t)~UART4_CR6_LSLV); } if(UART4_Autosync != UART4_LIN_AUTOSYNC_DISABLE) { UART4->CR6 |= UART4_CR6_LASE ; } else { UART4->CR6 &= ((uint8_t)~ UART4_CR6_LASE ); } if(UART4_DivUp != UART4_LIN_DIVUP_LBRR1) { UART4->CR6 |= UART4_CR6_LDUM; } else { UART4->CR6 &= ((uint8_t)~ UART4_CR6_LDUM); } } /** * @brief Enables or disables the UART4 LIN mode. * @param NewState is new state of the UART4 LIN mode. * This parameter can be ENABLE or DISABLE * @retval None */ void UART4_LINCmd(FunctionalState NewState) { assert_param(IS_FUNCTIONALSTATE_OK(NewState)); if(NewState != DISABLE) { /* Enable the LIN mode by setting the LINE bit in the CR2 register */ UART4->CR3 |= UART4_CR3_LINEN; } else { /* Disable the LIN mode by clearing the LINE bit in the CR2 register */ UART4->CR3 &= ((uint8_t)~UART4_CR3_LINEN); } } /** * @brief Enables or disables the UART4 Smart Card mode. * @param NewState: new state of the Smart Card mode. * This parameter can be: ENABLE or DISABLE. * @retval None */ void UART4_SmartCardCmd(FunctionalState NewState) { /* Check parameters */ assert_param(IS_FUNCTIONALSTATE_OK(NewState)); if(NewState != DISABLE) { /* Enable the SC mode by setting the SCEN bit in the CR5 register */ UART4->CR5 |= UART4_CR5_SCEN; } else { /* Disable the SC mode by clearing the SCEN bit in the CR5 register */ UART4->CR5 &= ((uint8_t)(~UART4_CR5_SCEN)); } } /** * @brief Enables or disables NACK transmission. * @param NewState: new state of the Smart Card mode. * This parameter can be: ENABLE or DISABLE. * @retval None */ void UART4_SmartCardNACKCmd(FunctionalState NewState) { /* Check parameters */ assert_param(IS_FUNCTIONALSTATE_OK(NewState)); if(NewState != DISABLE) { /* Enable the NACK transmission by setting the NACK bit in the CR5 register */ UART4->CR5 |= UART4_CR5_NACK; } else { /* Disable the NACK transmission by clearing the NACK bit in the CR5 register */ UART4->CR5 &= ((uint8_t)~(UART4_CR5_NACK)); } } /** * @brief Selects the UART4 WakeUp method. * @param UART4_WakeUp: specifies the UART4 wakeup method. * This parameter can be any of the @ref UART4_WakeUp_TypeDef values. * @retval None */ void UART4_WakeUpConfig(UART4_WakeUp_TypeDef UART4_WakeUp) { assert_param(IS_UART4_WAKEUP_OK(UART4_WakeUp)); UART4->CR1 &= ((uint8_t)~UART4_CR1_WAKE); UART4->CR1 |= (uint8_t)UART4_WakeUp; } /** * @brief Determines if the UART4 is in mute mode or not. * @param NewState: new state of the UART4 mode. * This parameter can be ENABLE or DISABLE * @retval None */ void UART4_ReceiverWakeUpCmd(FunctionalState NewState) { assert_param(IS_FUNCTIONALSTATE_OK(NewState)); if(NewState != DISABLE) { /* Enable the mute mode UART4 by setting the RWU bit in the CR2 register */ UART4->CR2 |= UART4_CR2_RWU; } else { /* Disable the mute mode UART4 by clearing the RWU bit in the CR1 register */ UART4->CR2 &= ((uint8_t)~UART4_CR2_RWU); } } /** * @brief Returns the most recent received data by the UART4 peripheral. * @param None * @retval Received Data */ uint8_t UART4_ReceiveData8(void) { return ((uint8_t)UART4->DR); } /** * @brief Returns the most recent received data by the UART4 peripheral. * @param None * @retval Received Data */ uint16_t UART4_ReceiveData9(void) { uint16_t temp = 0; temp = ((uint16_t)(((uint16_t)((uint16_t)UART4->CR1 & (uint16_t)UART4_CR1_R8)) << 1)); return (uint16_t)((((uint16_t)UART4->DR) | temp) & ((uint16_t)0x01FF)); } /** * @brief Transmits 8 bit data through the UART4 peripheral. * @param Data: the data to transmit. * @retval None */ void UART4_SendData8(uint8_t Data) { /* Transmit Data */ UART4->DR = Data; } /** * @brief Transmits 9 bit data through the UART4 peripheral. * @param Data: the data to transmit. * @retval None */ void UART4_SendData9(uint16_t Data) { /* Clear the transmit data bit 8 */ UART4->CR1 &= ((uint8_t)~UART4_CR1_T8); /* Write the transmit data bit [8] */ UART4->CR1 |= (uint8_t)(((uint8_t)(Data >> 2)) & UART4_CR1_T8); /* Write the transmit data bit [0:7] */ UART4->DR = (uint8_t)(Data); } /** * @brief Transmits break characters. * @param None * @retval None */ void UART4_SendBreak(void) { UART4->CR2 |= UART4_CR2_SBK; } /** * @brief Sets the address of the UART4 node. * @param UART4_Address: Indicates the address of the UART4 node. * @retval None */ void UART4_SetAddress(uint8_t UART4_Address) { /*assert_param for x UART4_Address*/ assert_param(IS_UART4_ADDRESS_OK(UART4_Address)); /* Clear the UART4 address */ UART4->CR4 &= ((uint8_t)~UART4_CR4_ADD); /* Set the UART4 address node */ UART4->CR4 |= UART4_Address; } /** * @brief Sets the specified UART4 guard time. * @note SmartCard Mode should be Enabled * @param UART4_GuardTime: specifies the guard time. * @retval None */ void UART4_SetGuardTime(uint8_t UART4_GuardTime) { /* Set the UART4 guard time */ UART4->GTR = UART4_GuardTime; } /** * @brief Sets the system clock prescaler. * @note IrDA Low Power mode or smartcard mode should be enabled * @note This function is related to SmartCard and IrDa mode. * @param UART4_Prescaler: specifies the prescaler clock. * This parameter can be one of the following values: * @par IrDA Low Power Mode * The clock source is divided by the value given in the register (8 bits) * - 0000 0000 Reserved * - 0000 0001 divides the clock source by 1 * - 0000 0010 divides the clock source by 2 * - ... * @par Smart Card Mode * The clock source is divided by the value given in the register * (5 significant bits) multiplied by 2 * - 0 0000 Reserved * - 0 0001 divides the clock source by 2 * - 0 0010 divides the clock source by 4 * - 0 0011 divides the clock source by 6 * - ... * @retval None */ void UART4_SetPrescaler(uint8_t UART4_Prescaler) { /* Load the UART4 prescaler value*/ UART4->PSCR = UART4_Prescaler; } /** * @brief Checks whether the specified UART4 flag is set or not. * @param UART4_FLAG specifies the flag to check. * This parameter can be any of the @ref UART4_Flag_TypeDef enumeration. * @retval FlagStatus (SET or RESET) */ FlagStatus UART4_GetFlagStatus(UART4_Flag_TypeDef UART4_FLAG) { FlagStatus status = RESET; /* Check parameters */ assert_param(IS_UART4_FLAG_OK(UART4_FLAG)); /* Check the status of the specified UART4 flag*/ if(UART4_FLAG == UART4_FLAG_LBDF) { if((UART4->CR4 & (uint8_t)UART4_FLAG) != (uint8_t)0x00) { /* UART4_FLAG is set*/ status = SET; } else { /* UART4_FLAG is reset*/ status = RESET; } } else if(UART4_FLAG == UART4_FLAG_SBK) { if((UART4->CR2 & (uint8_t)UART4_FLAG) != (uint8_t)0x00) { /* UART4_FLAG is set*/ status = SET; } else { /* UART4_FLAG is reset*/ status = RESET; } } else if((UART4_FLAG == UART4_FLAG_LHDF) || (UART4_FLAG == UART4_FLAG_LSF)) { if((UART4->CR6 & (uint8_t)UART4_FLAG) != (uint8_t)0x00) { /* UART4_FLAG is set*/ status = SET; } else { /* UART4_FLAG is reset*/ status = RESET; } } else { if((UART4->SR & (uint8_t)UART4_FLAG) != (uint8_t)0x00) { /* UART4_FLAG is set*/ status = SET; } else { /* UART4_FLAG is reset*/ status = RESET; } } /* Return the UART4_FLAG status*/ return status; } /** * @brief Clears the UART4 flags. * @param UART4_FLAG specifies the flag to clear * This parameter can be any combination of the following values: * - UART4_FLAG_LBDF: LIN Break detection flag. * - UART4_FLAG_LHDF: LIN Header detection flag. * - UART4_FLAG_LSF: LIN synchrone field flag. * - UART4_FLAG_RXNE: Receive data register not empty flag. * @note: * - PE (Parity error), FE (Framing error), NE (Noise error), * OR (OverRun error) and IDLE (Idle line detected) flags are cleared * by software sequence: a read operation to UART4_SR register * (UART4_GetFlagStatus())followed by a read operation to UART4_DR * register(UART4_ReceiveData8() or UART4_ReceiveData9()). * * - RXNE flag can be also cleared by a read to the UART4_DR register * (UART4_ReceiveData8()or UART4_ReceiveData9()). * * - TC flag can be also cleared by software sequence: a read operation * to UART4_SR register (UART4_GetFlagStatus()) followed by a write * operation to UART4_DR register (UART4_SendData8() or UART4_SendData9()). * * - TXE flag is cleared only by a write to the UART4_DR register * (UART4_SendData8() or UART4_SendData9()). * * - SBK flag is cleared during the stop bit of break. * @retval None */ void UART4_ClearFlag(UART4_Flag_TypeDef UART4_FLAG) { assert_param(IS_UART4_CLEAR_FLAG_OK(UART4_FLAG)); /* Clear the Receive Register Not Empty flag */ if(UART4_FLAG == UART4_FLAG_RXNE) { UART4->SR = (uint8_t)~(UART4_SR_RXNE); } /* Clear the LIN Break Detection flag */ else if(UART4_FLAG == UART4_FLAG_LBDF) { UART4->CR4 &= (uint8_t)(~UART4_CR4_LBDF); } /* Clear the LIN Header Detection Flag */ else if(UART4_FLAG == UART4_FLAG_LHDF) { UART4->CR6 &= (uint8_t)(~UART4_CR6_LHDF); } /* Clear the LIN Synch Field flag */ else { UART4->CR6 &= (uint8_t)(~UART4_CR6_LSF); } } /** * @brief Checks whether the specified UART4 interrupt has occurred or not. * @param UART4_IT: Specifies the UART4 interrupt pending bit to check. * This parameter can be one of the following values: * - UART4_IT_LBDF: LIN Break detection interrupt * - UART4_IT_TXE: Transmit Data Register empty interrupt * - UART4_IT_TC: Transmission complete interrupt * - UART4_IT_RXNE: Receive Data register not empty interrupt * - UART4_IT_IDLE: Idle line detection interrupt * - UART4_IT_OR: OverRun Error interrupt * - UART4_IT_PE: Parity Error interrupt * @retval The state of UART4_IT (SET or RESET). */ ITStatus UART4_GetITStatus(UART4_IT_TypeDef UART4_IT) { ITStatus pendingbitstatus = RESET; uint8_t itpos = 0; uint8_t itmask1 = 0; uint8_t itmask2 = 0; uint8_t enablestatus = 0; /* Check parameters */ assert_param(IS_UART4_GET_IT_OK(UART4_IT)); /* Get the UART4 IT index*/ itpos = (uint8_t)((uint8_t)1 << (uint8_t)((uint8_t)UART4_IT & (uint8_t)0x0F)); /* Get the UART4 IT index*/ itmask1 = (uint8_t)((uint8_t)UART4_IT >> (uint8_t)4); /* Set the IT mask*/ itmask2 = (uint8_t)((uint8_t)1 << itmask1); /* Check the status of the specified UART4 pending bit*/ if(UART4_IT == UART4_IT_PE) { /* Get the UART4_ITPENDINGBIT enable bit status*/ enablestatus = (uint8_t)((uint8_t)UART4->CR1 & itmask2); /* Check the status of the specified UART4 interrupt*/ if(((UART4->SR & itpos) != (uint8_t)0x00) && enablestatus) { /* Interrupt occurred*/ pendingbitstatus = SET; } else { /* Interrupt not occurred*/ pendingbitstatus = RESET; } } else if(UART4_IT == UART4_IT_LBDF) { /* Get the UART4_IT enable bit status*/ enablestatus = (uint8_t)((uint8_t)UART4->CR4 & itmask2); /* Check the status of the specified UART4 interrupt*/ if(((UART4->CR4 & itpos) != (uint8_t)0x00) && enablestatus) { /* Interrupt occurred*/ pendingbitstatus = SET; } else { /* Interrupt not occurred*/ pendingbitstatus = RESET; } } else if(UART4_IT == UART4_IT_LHDF) { /* Get the UART4_IT enable bit status*/ enablestatus = (uint8_t)((uint8_t)UART4->CR6 & itmask2); /* Check the status of the specified UART4 interrupt*/ if(((UART4->CR6 & itpos) != (uint8_t)0x00) && enablestatus) { /* Interrupt occurred*/ pendingbitstatus = SET; } else { /* Interrupt not occurred*/ pendingbitstatus = RESET; } } else { /* Get the UART4_IT enable bit status*/ enablestatus = (uint8_t)((uint8_t)UART4->CR2 & itmask2); /* Check the status of the specified UART4 interrupt*/ if(((UART4->SR & itpos) != (uint8_t)0x00) && enablestatus) { /* Interrupt occurred*/ pendingbitstatus = SET; } else { /* Interrupt not occurred*/ pendingbitstatus = RESET; } } /* Return the UART4_IT status*/ return pendingbitstatus; } /** * @brief Clears the UART4 pending flags. * @param UART4_IT specifies the pending bit to clear * This parameter can be one of the following values: * - UART4_IT_LBDF: LIN Break detection interrupt * - UART4_IT_LHDF: LIN Header detection interrupt * - UART4_IT_RXNE: Receive Data register not empty interrupt. * @note * - PE (Parity error), FE (Framing error), NE (Noise error), * OR (OverRun error) and IDLE (Idle line detected) pending bits are * cleared by software sequence: a read operation to UART4_SR register * (UART4_GetITStatus()) followed by a read operation to UART4_DR register * (UART4_ReceiveData8() or UART4_ReceiveData9()). * * - RXNE pending bit can be also cleared by a read to the UART4_DR * register (UART4_ReceiveData8() or UART4_ReceiveData9()). * * - TC (Transmit complete) pending bit can be cleared by software * sequence: a read operation to UART4_SR register * (UART4_GetITStatus()) followed by a write operation to UART4_DR * register (UART4_SendData8()or UART4_SendData9()). * * - TXE pending bit is cleared only by a write to the UART4_DR register * (UART4_SendData8() or UART4_SendData9()). * @retval None */ void UART4_ClearITPendingBit(UART4_IT_TypeDef UART4_IT) { assert_param(IS_UART4_CLEAR_IT_OK(UART4_IT)); /* Clear the Receive Register Not Empty pending bit */ if(UART4_IT == UART4_IT_RXNE) { UART4->SR = (uint8_t)~(UART4_SR_RXNE); } /* Clear the LIN Break Detection pending bit */ else if(UART4_IT == UART4_IT_LBDF) { UART4->CR4 &= (uint8_t)~(UART4_CR4_LBDF); } /* Clear the LIN Header Detection pending bit */ else { UART4->CR6 &= (uint8_t)(~UART4_CR6_LHDF); } } /** * @} */ /** * @} */ /************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/